طي دو دهه اخير استفاده از تلفن همراه به سرعت رواج يافته است اما همزمان مطالعات متعددي نيز در سطح بين المللي در مورد تاثيرات استفاده درازمدت از گوشي هاي تلفن همراه و همچنين قرار گرفتن در معرض امواج آنتن هاي تقويت كننده انجام گرفته است. تماس هاي مكرر خوانندگان، ما را بر آن داشت كه در گفتگو با تني چند از متخصصان برجسته كشور در عرصه مخابرات، مغز و اعصاب و سرطان به بررسي موضوع بپردازيم.

دكتر محققي رئيس مركز تحقيقات سرطان در گفتگو باخبرنگار ما مي گويد: اصولا آنتن هاي تلفن همراه و دكل هاي مخابراتي و نيز تشعشعات ناشي از دكل هاي برق فشار قوي هر يك به نوبه خود اثرگذاري خفيف تا شديدي بر روي افراد دارند.
به طور نمونه در مورد دكل هاي برق فشار قوي طيف هاي مختلف امواج الكترومغناطيسي، ميدان هاي مغناطيسي ايجاد مي كنند كه افرادي كه در حوزه اين ميدان ها قرار مي گيرند تحت تاثير آثار سوء اين امواج واقع مي شوند به گونه اي كه تاثير اين امواج بر روي كودكان مي تواند باعث بروز برخي از انواع سرطان ها شود. در افراد بالغ نيز موضوع در مواردي باعث بروز مخاطرات و بيماري ها در سيستم هاي عصبي، قلب و عروق و دستگاه گوارش مي شود و در مواردي نيز باعث ايجاد سرطان خون در اين افراد شده است.

وي همچنين با اشاره به اثرات سوء گوشي هاي تلفن همراه اظهار مي دارد: به طور كلي استفاده كنندگان از گوشي هاي تلفن همراه تحت تاثير دو نوع امواج هستند؛ يكي در زماني است كه مخابره اي انجام نمي شود. در اين حالت، يك حوزه موجي با نفوذ محدود ايجاد مي شود كه چنانچه در نزديكي نقاطي از بدن مانند گوش، قلب و سيستم عصبي قرار گيرند، آثار سوء خود را برجاي مي گذارند. در حالت دوم زماني كه مخابره انجام مي شود، ميدان وسيع تر و فعال تري ايجاد مي شود كه در اين صورت نقاطي از بدن كه در معرض عبور امواج هستند آسيب هاي شديدتري مي بينند.
به گفته دكتر محققي امروزه در حوزه هاي پزشكي بيماري هايي گزارش مي شود كه تحت تاثير اين نوع امواج هستند. بنابراين امواج مختلف اعم از امواج صوتي، امواج الكترومغناطيسي، اشعه ايكس و اشعه يونيزان كه در طبيعت وجود دارد، هر يك آثار منفي در بدن به جاي مي گذارند.
وي همچنين در خصوص اثرگذاري تشعشعات ناشي از سيستم هاي btsآنتن هاي تلفن همراه خاطرنشان مي كند: تمام اين تشعشعات اگر در فاصله نزديك بدن قرار گيرند قلب يا سيستم اعصاب مركزي يا گوش و چشم را تحت تاثير قرار مي دهند و باعث ايجاد اختلالاتي در اين اعضا يا بروز بيماري هايي مي شوند. به عقيده رئيس مركز تحقيقات سرطان در زندگي امروزي، اكثر افراد تحت تاثير اين امواج قرار دارند كه در مورد امواج پرفركانس و حتي ساير امواج توصيه مي كنيم كه اين دكل ها تا شعاع هاي معيني دور از مناطق مسكوني نصب شوند و چنانچه اين آنتن ها يا دكل ها در مناطق مسكوني نصب شده اند حتما بايد جابجا شوند چون زندگي طولاني مدت افراد خصوصا كودكان در مجاورت اين دكل ها بسيار خطرناك است.

وي مي افزايد: همچنين در مورد استفاده از گوشي هاي تلفن همراه نيز توصيه مي كنيم كه ميزان به كارگيري آنها به حداقل برسد و تنها در موارد ضروري از آنها استفاده شود. حتي الامكان افراد سعي كنند از قراردادن اين گوشي ها در مجاورت برخي اعضاي بدن مانند قلب جلوگيري كنند.
دكتر هوشنگ صابري متخصص مغز و اعصاب و رئيس مركز ترميم ضايعات نخاعي نيز در خصوص اثرگذاري امواج btsگوشي هاي تلفن همراه بر روي انسان مي گويد: در اين رابطه مقالات بسياري به چاپ رسيده است كه آنها را مي توان به دو دسته تقسيم كرد. يك دسته بررسي هايي است كه بر روي پايگاه هاي آنتن موبايل انجام شده است و بخش ديگر به اثرات گوشي تلفن همراه بر روي مصرف كنندگان برمي گردد؛ نتايج اين بررسي ها نيز نشان داده است كه استفاده هاي مكرر از تلفن همراه احتمال بروز تومورهاي مغزي را به ميزان 80 درصد افزايش مي دهد.
وي مي افزايد: به علاوه در مورد افرادي كه در نزديكي آنتن ها و يا سيستم هاي btsتلفن همراه زندگي مي كنند، نيز تحقيقات متعددي صورت گرفته است. در همين رابطه، يك محقق آلماني نتايج بررسي خود را بدين شرح اعلام كرده است كه احتمال شيوع سرطان هاي پستان در افرادي كه در نزديكي اين آنتن ها زندگي مي كنند 3 برابر افراد عادي است.

البته مقالاتي نيز وجود دارند كه اثرات سوء آنتن هاي موبايل را بر سلامت افراد و ابتلا به تومورها و سرطا ن ها تكذيب كرده اند.
وي با بيان اين كه ميزان تشعشعات ناشي از آنتن هاي گوشي تلفن همراه در كوتاه مدت قابل توجه نيست، اظهار مي دارد: البته ميزان تشعشعات آنتن هاي تلفن همراه به مراتب بيشتر از تشعشعات گوشي هاي تلفن همراه است اما فاصله نزديك گوشي هاي تلفن همراه به بدن باعث مي شود تا اثرگذاري گوشي ها بيشتر از آنتن هاي تلفن همراه باشد. حال آن كه اگر فاصله گوشي با صورت يا سر 10 برابر شود تشعشعات نيز به يك صدم كاهش مي يابد.
وي با بيان اين كه افزايش تعداد آنتن هاي تلفن همراه يا سيستم هاي bts در سطح شهر اثرات سوء آنها را نيز افزايش خواهد داد مي گويد: به طور كلي توصيه ما به همه افراد اين است كه از قرار گرفتن در معرض امواج مختلف به مدت طولاني پرهيز كنند.
در اين زمينه دكتر صالحي، متخصص مغز و اعصاب، نيز در گفتگو با خبرنگار ما مي گويد: بروز سردردهاي ميگرني، اختلال حواس، استفراغ، خستگي بي خوابي و حتي سرطان از جمله عوارضي است كه در بسياري از مقالات علمي طي سال هاي اخير در مورد آثار سوء گوشي هاي موبايل درج شده است.

براي بررسي بيشتر موضوع و كسب نظرات كارشناسي متخصصان حوزه مخابرات با مهندس رمضان علي صادق زاده، فوق دكتراي مهندسي مخابرات و رئيس كميته مخابرات و ارتباطات مجلس نيز تماس گرفتيم. وي مي گويد: تاكنون گزارشي در خصوص عوارض سوء آنتن هاي تقويت موبايل گزارش نشده است چرا كه اصولا اين آنتن ها داراي تشعشعات بسيار كمي در مقايسه با گوشي تلفن همراه هستند و در حال حاضر در بسياري از نقاط دنيا نيز اين آنتن ها نصب شده است.
وي خاطرنشان كرد: متاسفانه در حال حاضر در مواردي شاهد هستيم برخي افراد يا مراكز از نصب آنتن هاي btsممانعت به عمل مي آورند و اين موضوع به دليل اخبار نادرستي است كه گاه منتشر مي شود.
وي خاطرنشان مي كند: تشعشعاتي كه از آنتن هاي تقويت كننده تلفن همراه ساطع مي شود اصولا بسيار كمتر از تشعشعات گوشي تلفن همراه است.
وي مي افزايد: اصولا امواج گوشي هاي تلفن همراه حدود 2 وات است و بنابراين تماس زياد با اين وسيله علاوه بر آن كه باعث خستگي، سردرد، كوفتگي و غيره مي شود در عين حال بر روي سلول هاي آبدار بدن از جمله گوش ، چشم و مغز اثرات منفي دارد بنابراين هر چقدر كمتر از اين وسيله استفاده شود بهتر است.
وي همچنين تصريح مي كند: آنتن هاي تقويت تلفن همراه اغلب بر روي دكل ها نصب مي شود بنابراين ارتفاع زياد آنها از سطح زمين اثرات مضر آنها را به صفر مي رساند اما نكته حائز اهميت در خصوص اين آنتن ها اين است كه چنانچه فواصل استاندارد بين آنتن ها كه تحت عنوان فواصل ايمني از آنها ياد مي شود و حدودا 20 متر تعيين شده است و باتوجه به نوع فركانس نيز متغير است رعايت نشود مي تواند عوارض سوئي براي سلامت افراد به همراه داشته باشد.

دكتر ابوالفضلي، مدير روابط عمومي ارتباطات سيار، نيز در اين رابطه مي گويد: طبق گزارش سازمان انرژي اتمي، شدت تشعشعات آنتن هاي bts بسيار كمتر از حد مجاز است و بر اين اساس نصب آنها به شرط رعايت فاصله ايمني 5-2 متري در اطراف آنها خطري ندارد بدين معنا كه در اين شعاع تا ارتفاع نصب بشقابك هاي آنتن با اتخاذ تمهيدات لازم، مانع ورود يا استقرار افراد شود و ساختماني در اين شعاع وجود نداشته باشد.
آنتن هاي تلفن همراه، دكل هاي مخابراتي و نيز تشعشعات ناشي از دكل هاي برق فشار قوي هر يك به نوبه خود اثرگذاري خفيف تا شديدي بر روي افراد دارند
چنانچه فواصل استاندارد بين آنتن ها كه تحت عنوان فواصل ايمني از آ نها ياد مي شود و حدودا 20 متر تعيين شده است رعايت نشود، مي تواند عوارضي براي سلامت افراد به همراه داشته باشد
+ نوشته شده توسط فرهاد مقصودی در چهارشنبه دهم خرداد 1391 و ساعت 15:53 |

 میدان‌های الكترومغناطیسی برق و خطر سرطان

میزان تولد سالانه در انگلستان700 هزار نوزاد در سال است. كه از این تعداد 500 مورد مبتلا به لوسمی هستند. و حدود 1000 مورد سرطان‌های دیگر در كودكان(زیر 15 سال) گزارش شده است. گزارش AGNIR حاكی از آن است كه هرگونه خطری مرتبط با سرطان خون در كودكان و جوانان و به‌ویژه كسانی كه اشعه بالایی نسبت به مقدار متوسط خانگی دریافت كرده‌اند، وجود دارد. این مقدار متوسط خانگی حدود 0.4 میکروتسلا است.

در انگلستان حدود 0.5 درصد از جمعیت در معرض میدان الكترو مغناطیسی بیشتر از 0.4 میکروتسلا قرار دارند.هم‌اكنون در UKCCS (مركزمطالعات سرطان كودكان انگلیس) مشخص شده است كه اثبات این امر مشكل است و هیچ‌گونه مدركی دال بر اینكه تشعشعات خانگی EMF در به‌وجود آمدن سرطان در بزرگسالان نقش دارند، وجود ندارد. بررسی مطالعات آزمایشگاهی‌ای كه توسط AGNIR انجام گرفته ارتباط واضح و آشكاری را بین میدان‌های الكترومغناطیسی خانگی و سرطان پیدا نكرده است.

گزارش AGNIR نشان می‌دهد در بزرگسالانی كه به‌طور شغلی در معرض میدان مغناطیسی هستند دلیل قطعی‌ای در ارتباط بین EMF (میدان الكترومغناطیسی) و سرطان پیدا نشده است. متوسط میدان مغناطیسی‌ای كه در هنگام مشاغل خطرناك و تحت میدان مغناطیسی (مثل پرسنل پست‌های فشار قوی و افراد تعمیركار خطوط انتقال) مورد تابش قرار می‌گیرد معمولا در حد 20 یا 30 میكروتسلا است و به دلیل اینكه زمان تحت میدان بودن طولانی نبوده زیاد خطرناك نیست.

رابطه بین میدان‌های مغناطیسی و لوسمی

برای چند سالی خطر ابتلا به سرطان كسانی كه در نزدیكی خطوط فشار قوی برق زندگی می‌كردند دارای اهمیت بود. مطالعات فراگیر در انگلیس و جاهای دیگر جهان روی خطر ابتلای كودكان به سرطان مثل سرطان خون، انجام شد. این مطالعات نشان داد كه قرار گرفتن محل زندگی كودكان در نزدیكی خطوط فشار قوی خطر ابتلا به سرطان خون را در آنان دو برابر می‌كند.

این تحقیقات به هم پیوسته در 9 كشور انجام گرفت (كشورهای اروپایی، آمریكای شمالی و نیوزلند). در كل، روی 3247 كودك مبتلا به لوسمی و 400 10 كودك تحت نظر تحقیق انجام گرفت. برای هر كودك، 24 یا 48 ساعت اندازه‌گیری شدت میدان مغناطیسی در منزل آنان با توجه به سوابق در معرض میدان مغناطیسی بودنشان به عمل آمد. مركز مطالعات سرطان كودكان انگلیس بیشترین تعداد كودكان مبتلا به سرطان خون را در این آزمایش دخالت داد؛یعنی 1073 نفر.

در 3203 كودك مبتلا به لوسمی و 338 10 كودك تحت نظر كه شدت میدان مغناطیسی در محل سكونت‌شان كمتر از 4/0 میكرو تسلا بود، افزایش خطری نسبت به مبتلا شدن به لوسمی مشاهده نشد. در 44 كودك مبتلا به لوسمی و 62 كودك تحت نظر كه محل سكونتشان در معرض تشعشع بیشتر از 0.4 میكرو تسلا بود، خطر ابتلا دو برابر شده بود كه خطر نسبی برابر با 2 می‌شود. لازم به ذكر است كه شدت میدان مغناطیسی در عكسبرداری MRI بین 1.5 تا 3 تسلا است.

میدان‌های الكتریكی و مغناطیسی در منزل به عوامل متعددی همچون فاصله از خطوط برق قدرت، تعداد و انواع دستگاه‌های الكتریكی داخل منزل، مكان سیم كشی منزل، بستگی دارد. میدان الكتریكی داخل اكثر منازل از 500V/m ومیدان مغناطیسی از 150 µT تجاوز نمی‌كند. كسانی كه با كامپیوتر یا وسایل الكتریكی و سیم‌ها سر و كار دارند، ممكن است مقدار زیادی میدان الكتریكی و مغناطیسی به آنها تابیده شود. مثلا در پست‌های فشار قوی میدان الكتریكی به بیشتر از25kV/m و میدان مغناطیسی به 2 mTنیز می‌رسد. جوشكاران در معرض میدان مغناطیسی حدود130mT هستند. كسانی كه با دستگاه‌های فتوكپی و دستگاه‌های ویدئویی كار می‌كنند نیز در معرض تابش قرار دارند.

مسلم است كه در معرض میدان مغناطیسی ELF بودن می‌تواند بر فیزیولوژی و وضعیت انسان تاثیر بگذارد. در آزمایش‌ها مشاهده شده كه میدانELF بیشتر از 5mT اثرات اندكی بر برخی علائم بالینی و فیزیولوژیكی گذاشته است. مثل: تغییرات خونی، ECG (نوار قلبی)، ضربان قلب، فشار خون و دمای بدن. برخی محققان گفته‌اند كه میدان ELF می‌تواند ترشح هورمون ملاتونین (هورمونی كه به خواب، بلوغ و... مرتبط است) متوقف كند.

دوری از میدان‌های الكتریكی 50/60Hz می‌تواندبه وسیله حفاظ قرار دادن دور سیم‌های برق ساختمان در هنگام سیم كشی انجام شود؛ در محل‌های كاری‌ای كه میدان الكتریكی در آنها زیاد است می‌تواند مفید باشد. اما راه مقرون به صرفه‌ای برای محافظت در برابر میدان‌های ELF مغناطیسی وجود ندارد.

میدان‌های ELF قوی باعث تداخل الكترومغناطیسی (EMI) در دستگاه‌های تنظیم‌كننده ضربان قلب یا باتری‌های قلب می‌شوند. كارمندانی كه با كامپیوتر كار می‌كنند ممكن است لرزش یا نامطلوب بودن تصویر را در مونیتورشان مشاهده كنند. میدان مغناطیسی ELF اطراف ترمینال‌های ورودی برق و گاهی پاور كامپیوتر بیشتر از 1µT است كه می‌تواند با تصویر روی صفحه مونیتور تداخل كند. یك راه حل ساده برای این مشكل تغییر مكان كامپیوتر به جایی دیگر در اتاق است.

كابل‌ها و سرطان

برخی دانشمندان وجود رابطه میان انواعی از میدان‌های الكترومغناطیسی و سرطان خون در كودكان را تایید می‌كنند و اعلام كرده‌اند كابل‌ها و دكل‌های برق فشار قوی می‌توانند عامل سرطان‌های خون در كودكان باشند. در مطالعه اخیری كه در اروپا انجام شده است، حدود 29 هزارنفر را كه پیش از 15سالگی به سرطان مبتلا شده‌اند (ازجمله 9700 مورد سرطان خون) با گروه كنترلی كه از لحاظ جنسیت، تاریخ تولد و منطقه تولد با افراد مبتلا به سرطان مشابهت داشته‌اند، مقایسه كرده‌اند.

در این پژوهش، افراد جامعه نمونه در محدوده یك كیلومتری خطوط برق 275 و 400 كیلوواتی زندگی می‌كرده‌اند. این تحقیقات نشان داده است كودكانی كه در محدوده 200 متری خطوط برق زندگی می‌كنند، امكان ابتلا به سرطان خون در آنها 69 درصد بیش از كودكانی است كه در فاصله بیش از 600 متری خطوط برق زندگی می‌كنند.

این گزارش همچنین حاكی است، كودكانی كه در محدوده 200 تا 600 متری خطوط برق زندگی می‌كنند، نسبت به كودكانی كه در فاصله بیش از 600 متری خطوط برق زندگی می‌كنند، 23درصد بیشتر در معرض ابتلا به سرطان خون هستند. با وجود این محققان عقیده دارند هرچند نزدیكی به خطوط فشار برق قوی می‌تواند در ایجاد سرطان خون در كودكان مؤثر باشد، اما این تاثیر، ناچیز و احتمالا تصادفی است.

از سوی دیگر به گزارش بخش فرانسوی سایت msn، دكتر لورن بونتوس، رئیس كمیته پزشكی بررسی خطرات احتمالی گفته است كه تا‌كنون هیچ ارتباط علمی برای اثبات بروز بیماری سرطان خون در كسانی كه در این مناطق زندگی می‌كنند، مشاهده نشده است.

پزشكان هم‌اكنون در حال بررسی روی این موضوع هستند و این بررسی براساس نشانه‌های موجود صورت می‌گیرد. به‌طور كلی آنها 2 گروه را مورد آزمایش قرار داده‌اند: گروه اول اشخاصی هستند كه گزارش‌هایی از بروز آسیب و بیماری در آنها نشان داده شده است و گروه دوم اشخاصی كه هنوز گزارشی از آسیب یا بیماری در آنها داده نشده است.

برخی از ساكنان یكی از شهرهای فرانسه كه در مجاورت این دكل‌ها زندگی می‌كنند، شكایت كرده‌اند كه درطول شب خواب‌های مغشوش می‌بینند یا از استرس و حالت‌های عصبی كه به آن دچارند، رنج می‌برند. كسی دلیل آن را نمی‌داند ولی این مشكلات وجود دارند. شهردار این شهر اعلام كرده است كه تمامی افرادی كه خانه‌شان در كنار یك دكل 400هزار ولتی واقع شده بوده، خانه‌های خود را ترك كرده‌اند.براساس یك بررسی پزشكی زندگی در حداقل300 متری یك دكل برق می‌تواند سالم باشد و عوارض خاصی برای افراد نخواهد داشت.

بررسی كه روی 2868 نفر از ساكنینی كه در 300 متری این دكل‌ها زندگی می‌كردند و 976 نفری كه در این منطقه ساكن نشده‌اند نشان می‌دهد كه 15.8 درصد از ساكنینی كه در فاصله كمتر از 300 متر زندگی می‌كردند در وضعیت بسیار عصبی هستند و 7.9 درصد از افراد نیز كه در همین منطقه قرار دارند، مشكل خاصی را نداشته اند.

نتایج این بررسی به مجلس فرانسه اعلام شده است و سؤالی كه هم‌اكنون مطرح است این است كه باید این وضع را تحمل كرد و بیمار باقی ماند یا باید برای دور كردن محل زندگی افراد از این دكل‌ها چاره‌ای اندیشید؟

نكات ایمنی

اگر از بحث‌های مرغ و تخم مرغی مرتبط با این موضوع كه اول ساختمان‌سازی‌ شده و بعد نصب دكل‌ها صورت گرفته یا برعكس؟ بگذریم، جهت حفظ ایمنی كسانی كه منازلشان به هر دلیلی در مجاورت خطوط انتقال نیرو است رعایت نكات ایمنی زیر ضروری است:

1) دكل فشار قوی نگه دارنده تعدادی سیم حامل جریان با ولتاژ بسیار بالاست كه حتی نزدیك شدن به آن می‌تواند برای انسان مضر باشد، لذا تحت هیچ شرایطی به دكل‌ها نزدیك نشوید.

2) به هیچ عنوان اتومبیل‌تان را زیر خطوط فشار قوی پارك نكنید. احتمال پاره شدن سیم دكل هرچند بسیار پایین است اما محال نیست.

3) درصورتی كه در اتومبیل بودید و سیم فشارقوی روی اتومبیل شما افتاد به هیچ عنوان از اتومبیل پیاده نشوید چون به محض پیاده شدن پودر می‌شوید. محفظه اتومبیل مانند یك قفس فاراده عمل خواهد كرد و شما در امان خواهید بود وسریعا با 121 تماس بگیرید تا نیروهای امدادی به كمك شما بیایند.

4) مراقب باشید تا فرزندانتان به هیچ عنوان به دكل‌ها نزدیك نشوند و از آن بالا نروند به غیراز خطر برق گرفتگی خطر سقوط نیز آنها را تهدید خواهد كرد.

5) در هنگامی كه هوا بارانی است یا رطوبت هوا بالاست پدیده كرونا در اطراف سیم‌های حامل جریان بیشتر می‌شود. این پدیده ( شما آن را بیشتر با صدای وز وز می شناسید ) به هیچ عنوان خطرناك نیست لذا نگران نباشید. از كاشتن درخت، گیاه و گل زیر خطوط فشارقوی جداً بپرهیزید. گیاهان زیر چنین خطوطی رشد مناسبی نخواهند داشت ( به جز درختان ) و درختان نیز بعدها در اثر رشد می‌توانند برای خط ایجاد مزاحمت كنند.

+ نوشته شده توسط فرهاد مقصودی در چهارشنبه دهم خرداد 1391 و ساعت 15:18 |

مقدمه : 

تلفات سیستم قدرت به سه گروه تلفات فنی تلفات غیر فنی و تلفات تجاری قابل دسته بندی می باشند. اگر کل تلفات را معادل تفاضل انرژی تولید شده و انرژی فروخته شده بگیریم باید تلفات تجاری را نیز به شرح زیر به آن بیافزائیم.  

 تلفات تجاری + انرژی فروخته شده - انرژی تولید شده = تلفات کل  

 در واقع در رابطه فوق داریم :  

 تلفات غیر فنی + تلفات فنی = انرژی فروخته شده - انرژی تولید شده  

   که تلفات فنی اصطلاحاً به آن دسته از تلفات انرژی اطلاق می شود که به حرارت تبدیل می گردند و عمدتاً به دلیل بهینه نبودن  سیستم و اجزاء آن صورت می گیرد در حالی که تلفات غیر فنی به تلفاتی گفته می شود که بیشتر جنبه اندازه گیری و محاسباتی دارند {7و8}. اما تلفات تجاری دارای ماهیتی متفاوت از دو نوع تلفات فنی و غیر فنی است و در واقع یک نوع هدر رفتن مستقیم انرژی نمی باشد بلکه به آن دسته از زیان های اقتصادی اطلاق می شود که در اثر قطع برق و یا مشکلات کیفیت توان دامنگیر تولیدکنندگان و مصرف کنندگان انرژی الکتریکی می گردد.
در این قسمت هر یک از تلفات فوق با جزئیات بیشتری مورد تحلیل و تشریح قرار خواهد گرفت.

تلفات فنی  

همانطور که اشاره شد تلفات فنی به دسته ای از تلفات سیستم قدرت گفته می شود که به نوعی منجر به تبدیل انرژی الکتریکی به حرارت، از آغاز تولید تا مرحله تحویل به مشترک می گردد.
تلفات فنی که در بسیاری از موارد به جای کل تلفات سیستم قدرت اشتباه گرفته می شود مشتمل بر طیف وسیعی از انواع تلفات می باشد که در ای بخش تحت دو عنوان تلفات انتقال و تلفات توزیع تشریح گردیده اند. معمولا تلفات سیستم تولید (نیروگاه ها) در زمره تلفات سیستم قدرت محاسبه نمی شوند و نیروگاه ها به عنوان واحدهای صنعتی تلقی می گردند که فروش برق به شبکه را بر عهده دارند و کلیه انرژی های مصرف شده در نیروگاه به عنوان مصرف داخلی آن لحاظ می گردد که بعضا قابل کاهش است. لذا بررسی انواع تلفات و طرق کاهش آن ها در نیروگاه ها، به طور مختصر در ضمیمه انتهای گزارش درج گردیده است.  

تلفات در شبکه انتقال: 

تلفات فنی در شبکه انتقال دارای ابعاد بسیار گسترده ای می باشد {7} که در این بخش مورد اشاره قرار خواهند گرفت. 

تلفات ناشی از مقاومت خطوط
این نوع تلفات که در اثر مقاومت الکتریکی هادی در مقابل عبور جریان ایجاد می شود در واقع مهم ترین تلفات سیستم انتقال است و همانگونه که بعدا ملاحظه خواهد شد، سایر انواع تلفات انتقال به نحوی در افزایش این نوع تلفات سهیم می باشند.
این تلفات در یک سیستم سه فاز متقارن، تابعی از مقاومت
AC خطوط و مجذور جریان موثر عبوری است. قطعا افزایش سطح مقطع هادی ها که منجر به کاهش مقاومت خطوط می شود با قیود اقتصادی محدود می گردد لذا پذیرفتن سطح استاندارد برای آن ها و بالطبع تلفات معین در این مورد اجتناب ناپذیر است. فرسودگی و عمر زیاد هادی ها (مس یا آلومینیوم)، رسانایی آنها را کاهش می دهد و منجر به افزایش تلفات می گردد. همچنین طول زیاد خطوط انتقال اگر چه در اکثر موارد ناگزیر می باشد علاوه بر افزایش سایر مشکلات انتقال، تلفات خطوط را بالا می برد.
باید متذکر شد که اتصال نامناسب هادی ها می تواند تاثیر قابل ملاحظه ای در افزایش مقاومت خطوط و بالطبع تلفات آنها داشته باشد.  

 تلفات ناشی از فرسودگی تجهیزات
گذشت زمان خاصیت رسانایی هادی های مسی را کاهش داده و منجر به افزایش مقاومت وصل کلیدهای قدرت می گردد. تلفات آهنی هسته ترانسفورماتورها،
CTها و PTها با افزایش عمر، فزونی می گیرند و همچنین تلفات عایقی تمامی تجهیزات به دلیل ضعف عایقی ناشی از طول عمر، به شدت بالا می رود.

تلفات کرونا
یکی از تلفات قابل توجه در سیستم های قدرت الکتریکی ولتاژ بالا (سیستم انتقال) تلفات کرونا است. پدیده کرونا که نتیجه یونیزاسیون هوای اطراف هادی دارای ولتاژ بالا است، به همراه هاله ای از نور بنفش رنگ و نویز آکوستیک و الکترومغناطیسی بوده و کاربرد زیادی در بسیاری از صنایع (به ویژه فیلترینگ) دارد

در خطوط انتقال ولتاژ بالا می تواند سهم عمده ای از توان را در خود تلف نماید {9و10}. قطعا استفاده از هادی های گروهی (باندل ها) تا حد زیادی در کاهش اینگونه تلفات موثر است. اما باید به خاطر داشت که گذشت زمان، در اثر خوردگی و رسوب آلاینده ها بر سطوح ولتاژ بالا از جمله خطوط انتقال، ناهمواریها و نقاط تیزی بر روی آنها ایجاد می کند که میدان الکتریکی اطراف خود و بالطبع پدیده کرونا را بشدت تقویت می نماید.  

تلفات عایقی 

عایقهای مورد استفاده در سیستم های ولتاژ بالا ی جریان متناوب عمدتا دو نوع تلفات جدی را متحمل می گردند:

جریان نشتی
جریان عبوری از سطح ولتاژ بالا به سطح ولتاژ پایین عایق که تابعی از مقاومت عایقی و اختلاف پتانسیل دو سر آن است را جریان نشتی می گویند. البته تلفات ناشی از این جریان که معمولا مقدار ناچیزی است تنها پس از افزایش عمر عایق و کاهش مقاومت الکتریکی آن قابل توجه می گردد. نقاط عایقی تخریب شده و یا نقاطی که به صورت صحیح ترمیم نشده اند می توانند در این خصوص بسیار صدمه پذیر باشند.تلفات هیسترزیس
واضح است که عایق های مجاور با هادی های عبور دهنده جریان متناوب، متحمل شدت میدان مغناطیسی متناوبی، متناسب با آن جریان خواهند بود که طبیعتا در آنها تلفات هسیترزیس قابل توجهی ایجاد می کند. این تلفات به صورت قابل توجه در کابلهای جریان بالا مشاهده می شود. 

تلفات ناشی از عدم تقارن فازها 

در صورت وجود عدم تقارن فازها (که البته در سیستم انتقال بسیار ناچیز است) تلفات برآیند سه فاز بیش از حالت متقارن در سه فاز خواهد بود. به عبارت دیگر شباهت یکسان در مشخصات و پارامترهای الکتریکی فازهای یک خط که اغلب امری قطعی فرض می شود در عمل متفاوت خواهد بود. مهمترین عامل وقوع چنین مشکلی در شبکه انتقال، عدم جابجایی فازها به دلیل مشکلات فنی و اقتصادی می باشد.
تلفات ناشی از اضافه بار کابل ها، و ترانسفورماتور و سایر تجهیزات سیستم انتقال که به معنی عبور جریان بیش از مقدار نامی از آنها است تلفات توان اهمی در آنها را به صورت صعودی افزایش می دهد. البته باید متذکر شد که این افزایش تلفات اهمی، افزایش دمای تجهیزات نسبت به سطح نرمال و بالطبع افزایش تلفات عایقی و احیانا آهنی را نیز به دنبال خواهد داشت.
همچنین، اضافه بار شدن تجهیزات دارای هسته مغناطیسی غیر خطی از قبیل ترانسفورماتورها و
CTهای اندازه گیری می تواند منجر به ورود نقطه کار آنها به ناحیه اشباع منحنی BH گردد که در نتیجه هارمونیک های رتبه پایین بویژه هارمونیک های مضارب 3 بر روی ولتاژ ایجاد می کنند که خود، همانگونه که بعدا ذکر خواهد شد منشاء تلفات بیشتری است.  

تلفات ناشی از پخش بار نامناسب 

پخش بار در سیستم انتفال متداول، متاثر از توپولوژی شبکه و برنامه ریزی تولیدهای واحدهای مختلف نیروگاهی است. ولی ساختار موجود شبکه و همچنین برنامه ریزی تولید مورد استفاده در بسیاری از مواقع بهترین حالت نیست و طبیعتا کمترین تلفات را شامل نمی شود.
در واقع می توان با ایجاد تغییر در ساختار شبکه به طرق مختلف و همچنین برنامه ریزی بهینه تولید، پخش بار سیستم را به شکلی تغییر داد که تلفاتی کمتر از مقادیر قبلی داشته باشد، که به آن پخش بار بهینه می گویند.  

تلفات ناشی از عبور توان راکتیو 

 توان راکتیو مورد نیاز بار و عناصر ذخیره کننده انرژی سلف و خازن شبکه ( از جمله خود خطوط ، ترانسفورمرها و ... ) برحسب نوع بار در شبکه جاری می باشد . عبور توان راکتیو از شبکه علاوه بر بروز مشکلات جدی از قبیل اشغال ظرفیت شبکه و افت ولتاژ ، منجر به تلفات جدی انرژی نیز می گردد. نظر به اینکه تولید یا مصرف این نوع توان بر خلاف توان اکتیو نیازمند تامین انرژی از نیروگاه نمی باشد ، با تامین و مصرف آن در محل ، توسط بانک های خازنی با راکتورها ، می توان میزان عبور توان راکتیو از شبکه را کاهش داد که قطعا منجر به کاهش تلفات راکتیو شبکه می گردد .  

تلفات ناشی از انتشار امواج الکترومغناطیسی  

در اشیاء فلزی   نظر به اینکه انرژی الکتریکی در شبکه انتقال از نوع امواج الکترومغناطیس می باشد و با توجه به سطح بالای ولتاژ و جریان در آنها ، علی رغم فرکانس پایین سیستم قدرت ، همواره مقداری انرژی در ساختارها و پایه های فلزی مجاور هادی از طریق میادین قوی الکترومغناطیس القا شده و تلف می گردد

البته بطور معمول بدلیل ناچیز بودن این درصد تلفات و مشکلات محاسباتی آن ، از این گونه تلفات صرفنظر می شود .  

تلفات سیستم توزیع   

 معمولا در کل سیستم های قدرت بالاترین سهم تلفات به سیستم توزیع اختصاص دارد که البته دلیل این امر را باید در گستردگی سطح و کثرت ادوات موجود در این سیستم ، به همراه ویژگیهای دیگری از جمله بارهای تکفاز و سطح ولتاژ پایین آن جستجو نمود.
در ادامه مهمترین موارد تلفات انرژی الکتریکی در سیستم های توزیع مورد مطالعه قرار گرفته اند. 

 

 تلفات ناشی از مقاومت خطوط  

  مقاومت هادی ها همانند آنچه که در بحث تلفات انتقال مطرح گردید برجسته ترین عامل تلفات سیستم های توزیع می باشند . البته باید بخاطر داشت که در سیستم های توزیع مقاومت نسبی خطوط بالاتر است و بدلیل گستردگی و اتصالات متعدد، در صورت عدم رعایت صحت اتصالات ، این مقاومت و در نتیجه تلفات افزایش بیشتری خواهد داشت .  

تلفات ناشی از عدم تقارن خطوط   

  عدم تقارن خطوط در سیستم توزیع (که البته نه به دلیل متفاوت بودن مشخصات هادی های فازها بلکه به دلیل عدم جابجایی فازها بوجود می آید) منجر به ایجاد عدم تعادل شبکه از دیدگاه بار می شود که به نوبه خود عدم تعادل جریان فازها و تلفات ناشی از آن را به دنبال خواهد داشت


تلفات ناشی از عدم تعادل فازها  

    بارهای تک فاز سیستم توزیع به همراه عدم تقارن فازها باعث می شود که بعضا عدم تعادل شدید در پی داشته باشد .
از طرف دیگر عدم تعادل فازها منجر به جریان سیم نول می شود که در نتیجه تلفات انرژی در این سیم نیز به تلفات افزوده می گردد.  

تلفات ناشی از اتصال زمین نامناسب 

سیستم زمین نامناسب و یا فرسوده، مقاومت الکتریکی زیادی پیدا می کند و این مساله در سیستم های نامتعادل منجر به عدم تعادل ولتاژ و تلفات انرژی ناشی از آن خواهد شد.

 

 تلفات ذاتی ترانسفورماتورها ، تجهیزات اندازه گیری و ...
همانند سیستم انتقال، در شبکه های توزیع نیز توان عبوری در سر راه خود از تجهیزات متعددی عبور می نماید که هر یک بر حسب نوع، تکنولوژی ساخت و عمر خود درصدی از انرژی را تلف می نمایند .
بیشترین تلفات این بخش متعلق به ترانسفورماتورهای توزیع است که بطور گسترده در سیستم بکار گرفته می شوند .  

تلفات عایقی تجهیزات   

    اگرچه سطح ولتاژ پایین در سیستم توزیع ، تلفات عایقی تجهیزات را نسبت به سایر انواع تلفات کمرنگ می سازد لیکن با توجه به گستردگی و کثرت تجهیزات دارای این تلفات، در مجموع، این نوع تلفات قابل ملاحظه خواهد بود . 

تلفات ناشی از اضافه بار تجهیزات 

       اضافه بار تجهیزات توزیع نیز همانند تجهیزات سیستم انتقال، منجر به افزایش صعودی تلفات در آنها می گردد.
همچنین ایجاد هارمونیک ها (بویژه هارمونیک های مضارب 3) بدلیل وارد شدن به ناحیه اشباع ترانسفورماتورها و تلفات مرتبط به آنها از تبعات این افزایش بار از مقادیر نامی خواهد بود .   

تلفات ناشی از ضریب بار پایین 

       طبیعتا وجود پیک در منحنی بار روزانه مناطق مختلف توزیع ، علاوه بر تحمیل هزینه های هنگفت ، برنامه ریزی شبکه جهت تامین بار ساعات پیک را مشکل می نماید و تلفات تحمیل شده به شبکه را افزایش خواهد داد .  

تلفات ناشی از هارمونیک ها     

    همانطور که می دانیم ، سیستم توزیع بعنوان جبهه سیستم قدرت بطور جدی از بارهای خود تاثیر می پذیرد

بسیاری از بارهای جدید سیستم قدرت دارای ماهیت غیر خطی می باشند . این بارها که بدلیل پیشرفت صنعتی و مزایای خود هر روزه در حال افزایش می باشند ، عمدتا از تجهیزات الکترونیک قدرت استفاده می کنند که جریان غیر سینوسی از شبکه اخذ می نمایند . موارد عمده این تجهیزات عبارتند از لامپهای کم مصرف ، UPS ها ، کامپیوتر ها ، ASDها و ...
از طرف دیگر همانگونه که قبلا نیز اشاره شد بارهای الکتریکی دارای هسته آهن اشباع پذیر ، نظیر ترانسفورماتورها و موتورهای الکتریکی، در صورت اضافه بار شدن، با ورود به ناحیه غیر خطی منحنی مغناطیسی خود جریان مغناطیس کنندگی غیر خطی از شبکه اخذ می کنند که ایجاد هارمونیک (بویژه هارمونیک های مضارب 3) از مضرات آن است. 

 

اثر پوستی
اثر پوستی مبین افزایش مقاومت اهمی هادی ها در مقابل عبور جریان متناسب نسبت به جریان
DC بدلیل شار مغناطیسی متغیر با زمان ایجاد شده در اثر جریان است . در واقع مطابق این اثر ، مقاومت اهمی هادی و بالتبع تلفات الکتریکی آن با افزایش فرکانس جریان عبوری افزایش می یابد. بنا بر این بدیهی است که افزایش سطح THD جریان که به معنی افزایش میزان مولفه های جریان با فرکانس های بالاتر است مستقیما تلفات اهمی را ازطریق اثر پوستی افزایش می دهد. واضح است که این تلفات در تمامی هادی های حامل جریان، حتی سیم پیچ های ترانسفورماتورها نیز وجود دارد .  

تلفات آهنی
تلفات آهنی در هسته ترانسفورماتورهای قدرت و اندازه گیری و همچنین ماشین ها، تابعی از فرکانس ولتاژ اعمال شده به آنها است . بنابراین وجود هارمونیک های ولتاژ در سیستم ، این تلفات را بشدت افزایش می دهد .تلفات عایقی 
تلفات عایقی تجهیزات نیز عمدتا ناشی از تلفات هیسترزیس در آنها است، که خود تابعی از فرکانس ولتاژ کار است . لذا این نوع تلفات نیز در اثر وجود هارمونیک ها ، رشد خواهد داشت .  

 تلفات از طریق سیم نول 
هارمونیک مضارب 3 در نقطه نول اتصالات ستاره، یکدیگر را خنثی نمی کنند بلکه با یکدیگر جمع شده و جریان قابل توجهی از سیم نول عبور می دهند که تلفات سیم نول را بشدت بالا می برد. 

 

تلفات غیر فنی
همانگونه که قبلا اشاره شد ، تلفات غیر فنی به قسمتی از تلفات انرژی اتلاق می شود که در دسته تلفات فنی جای نمی گیرند و بیشتر جنبه خطاهای محاسباتی و اندازه گیری دارند .
در این قسمت ، انواع تلفات غیر فنی در یک سیستم قدرت مرور گشته و هریک از آنها مختصرا توضیح داده خواهد شد .   

استفاده غیر مجاز از برق
موارد متعددی از استفاده های غیر مجاز یا اصطلاحا برق دزدی وجود دارد که در زیر به آنها اشاره می شود . 

دستکاری در لوازم اندازه گیری و کنتورها 
برخی مواقع مشترکین بصورت غیر مجاز کنتورهای خود را باز نموده و با دستکاری آن ، اعداد قرائت شده را به نفع خود تغییر می دهند و یا اینکه با به هم زدن تنظیم آن اعداد قرائت شده توسط کنتور را دچار خطا می کنند .  

معیوب نمودن کنتورها 
معبوی نمودن کنتورها و اجتناب از آگاه سازی به موقع مسئولین باعث ثبت نشدن مقادیر مصرفی طی حداقل یک دوره مصرف می گردد.  

خارج کردن کنتورها از مدار 
خارج نمودن کنتور از مدار بصورت کامل یا جزئی، سهم زیادی از انرژی مصرف شده را از پروسه اندازه گیری خارج می نماید .   

عدم قرائت صحیح کنتورها 
عدم قرائت صحیح کنتورها توسط مامورین می تواند باعث بی اثر شدن سیستم تعرفه چند نرخی گردد.
در واقع ثبت مقدار انرژی مصرفی به میزان کمتر از مقدار واقعی می تواند نرخ تعرفه مشترک را از ردیف

مشترکین پر مصرف به کم مصرف منتقل نماید 

انشعاب گیری مستقیم از شبکه های برق
این مورد که برخلاف سایر موارد قبل ، معمولا جلوه ای کاملا آشکار دارد ، مشتمل بر مصرف کنندگانی میگردد که بدون داشتن حق امتیاز و مجوز قانونی و نصب کنتور از طرف شرکت برق ، بطور خود سرانه از طریق اتصالات سطحی ، از خطوط هوایی انرژی استفاده می نمایند .  

 فقدان سیستم اندازه گیری 
در یک سیستم قدرت بعضا بارهایی وجود دارند که بدلیل غیر اقتصادی بودن و یا کم توجهی فاقد سیستم اندازه گیری می باشند . بدیهی است که انرژی مصرفی این بارها اگرچه تولید و انتقال یافته است ، غیر قابل اندازه گیری خواهد بود بنابراین در زمره تلفات غیر فنی جای می گیرد. برخی از اینگونه تلفات به شرح زیرند .

روشنایی معابر 
در برخی موارد روشنایی معابر فاقد سیستم اندازه گیری است .  

مصارف کشاورزی  
بعضا تعرفه ارزان قیمت بخش کشاورزی منجر به عدم توجه کافی در نصب کنتور برای اینگونه بارها گردیده است .   

 مصارف موسسات دولتی و منازل مسکونی 
ممکن است موسسات و ادارت دولتی و یا پادگان هایی وجود داشته باشند که فاقد سیستم اندازه گیری انرژی الکتریکی وروردی باشند . همچنین باید منازل مسکونی سازمانی وابسته به آنها را نیز به این گروه افزود 

 تلفات تجاری
این تلفات بصورت غیر مستقیم به مصرف انرژی وابسته اند . در واقع صرفنظر از موارد برق دزدی و موارد اندازه گیری نشده ، دسته ای دیگر از تلفات غیر فنی وجود دارند که مرتبط با ناکارآمد بودن سیستم محاسبات و سایر مشکلات جنبی می باشند و اصولا ضررهای اقتصادی را شامل می گردند . عمده ترین موارد این دسته به شرح زیرند : 

قبوض پرداخت نشده  
عدم پرداخت به موقع قبوض از طرف مشترکین منجر به تاخیر در بازگشت سرمایه و درنتیجه باعث ضرر شرکت برق خواهد شد .  

 

صدور قبوض نادرست   
محاسبات و یا سایر اشتباهات که منجر به صدور قبوض نادرست می گردد ، می تواند دقت صورت گرفته درسایر مراحل اندازه گیری را بی ثمر نماید و بخشی از بازگشت درآمد ناشی از فروش انرژی را هدر دهد .  

 قرائت ناهمزمان کنتورها  
قرائت ناهمزمان کنتورها با روش های فعلی که توسط نیروی انسانی و با مراجعه حضوری در محل صورت می گیرد ، صرفنظر از اینکه مشکلاتی را درخصوص مسائل برنامه ریزی و توسعه شبکه ایجاد می کند موجب تبعیض در محاسبه بهای انرژی مشترکین و احیانا ضرر شرکت برق خواهد شد .  

 عدم نظارت بر دیماند خریداری شده توسط مصرف کننده   
در بسیاری از بارهای صنعتی ممکن است توان مصرفی، بالاتر از سقف دیماند مورد توافق باشد و عدم نظارت بر این مساله می تواند منجر به اضافه بارشدن شبکه از طرف مشترکین و در نتیجه ، زیان شرکت برق گردد.   

 انرژی توزیع نشده   
عدم توانایی سیستم در هر مرحله از تولید ، انتقال یا توزیع در تحویل انرژی به یکدیگر به نحوی که نتوانند آن را مطابق قرارداد در اختیار مشترک قرار دهند عملا به این معنی است که تمامی سرمایه های صرف شده در راستای احداث نیروگاه و شبکه جهت تامین بار ، بدلیل فروش نرفتن انرژی ، بلا استفاده مانده است که این طبیعتا نوعی زیان اقتصادی محسوب می شود
 

 خسارات ناشی از قطع بار یا مشکلات کیفیت توان    
خارج از استاندارد بودن کیفیت برق تخویلی به مشترک و یا قطع بار بدون هماهنگی و رضایت مشترکین می تواند به تجهیزات و محصولات آنها صدماتی وارد نماید که طبیعتا پرداخت این زیان ها به عهده شرکت برق خواهد بود.

+ نوشته شده توسط فرهاد مقصودی در چهارشنبه دهم خرداد 1391 و ساعت 14:53 |

اثر هارمونیك ها بر خازن ها


نوع مطلب : پروژه و تحقیق رشته برق  ،

  نقش خازنها به عنوان المان های الكتریكی و الكترونیكی كارآمد در صنایع مربوط به تولید و انتقال و توضیع امروزی غیر قابل انكار است بگونه ای كه دیگر هرگز نمی توان چنین صنایعی را بدون وجود خازنهای نیرو متصور شد.از این رو شناخت كامل خازنها و عوامل تاثیر گذار برآنها و حفظ و نگهداری و نظارت دقیق بر آنها ، برای افزایش طول عمر خازن ها و كار كرد بهینه آنها امری است الزامی و اجتناب ناپذیر.

 مقدمه

درسالهای اولیه هارمونیكها در صنایع چندان رایج نبودند.به خاطر مصرف كننده های خطی متعادل. مانند : موتورهای القایی سه فاز،گرم كنندها وروشن كننده های ملتهب شونده تا درجه سفیدی و ..... این بارهای خطی جریان سینوسی ای در فركانسی برابر با فركانس ولتاژ می كشند. بنابراین با این تجهیزات اداره كل سیستم نسبتا با سلامتی بیشتری همراه بود. ولی پیشرفت سریع در الكترونیك صنعتی در كاربری صنعتی سبب بوجود آمدن بارهای غیر خطی صنعتی شد. در ساده ترین حالت ، بارهای غیرخطی شكل موج بار غیر سینوسی از شكل موج ولتاژ سینوسی رسم می كنند (شكل موج جریان غیر سینوسی).

پدیدآورنده های اصلی بارهای غیر خطی درایوهای AC / DC ، نرم راه اندازها ، یكسوسازهای 6 / 12 فاز و ... می باشند. بارهای غیرخطی شكل موج جریان را تخریب می كنند. در عوض این شكل موج جریان شكل موج ولتاژ را تخریب می نماید. بنابراین سامانه به سمت تخریب شكل موج  در هر دوی ولتاژ و جریان می شود. در این مقاله سعی شده است تا بزبانی هرچه ساده تر توضیحی در مورد نحوه عملكرد هارمونیك ها و راه كاری برای دوری از تاثیر گذاری آنها بر خازنها ی نیرو ارائه شود.


اساس هارمونیك ها :

اصولا هارمونیك ها آلوده سازی شكل موج را در اشكال سینوسی آنها نشان می دهند. ولی فقط در مضارب فركانس اصلی . تخریب شكل موج را می توان در فركانس های مختلف (مضارب فركانس اصلی) بعنوان یك نوسان دوره ای بوسیله آنالیز فوریه تجزیه و تحلیل كرد. در حال حاضر هارمونیكهای فرد و زوج و مرتبه 3 در اندازه های مختلف ضرایب فركانس های مختلف در سامانه های الكتریكی موجودند كه مستقیما تجهیزات سامانه الكتریكی را متاثر می سازند. در معنایی وسیعتر هارمونیكهای زوج و مرتبه 3 هریك تلاش می كنند كه دیگری را خنثی نمایند. ولی در مدت زمانی كه بار نا متعادل است این هارمونیك های زوج و مرتبه 3 منجر به اضافه بار در نول و اتلاف انرژی شدید می شوند. با تمام احوال هارمونیك های فرد اول مانند هارمونیك پنجم ، هفتم ، یازدهم ، سیزدهم و .... عملكرد این تجهیزات الكتریكی را تحت تاثیر قرار می دهند.

هارمونیك های ولتاژ و جریان تاثیرات متفاوتی بر تجهیزات الكتریكی دارند. ولی عموما بیشتر تجهیزات الكتریكی به هارمونیكهای ولتاژ بسیار حساس اند. تجهیزات اصلی نیرو مانند موتورها، خازن ها و غیره بوسیله هارمونیكهای ولتاژ متاثر می شوند. به طور عمده هارمونیكهای جریان موجب تداخل مغناطیسی (Magnetic Interfrence) و همچنین موجب افزایش اتلاف در شبكه های توزیع می شوند. هارمونیكهای جریان وابسته به بار اند ، در حالی كه سطح هارمونیكهای ولتاژ به پایداری سامانه تغذیه و هارمونیكهای بار (هارمونیكهای جریان) بستگی دارد. عموما هارمونیك های ولتاژ از هارمونیك های جریان كمتر خواهند بود.    

تشدید:

اساسا تشدید سلفی – خازنی در همه انواع بارها مشاهده می شود. ولی اگر هارمونیك ها در شبكه توضیع شایع نباشند تاثیر تشدید فرونشانده می شود.

در هر تركیب سلفی – خازنی چه در حالت سری و چه در حالت موازی ، در فركانسی خاص تشدید رخ می دهد كه این فركانس خاص فركانس تشدید نامیده می شود. فركانس تشدید فركانسی است كه در آن رآكتنس خازنی (Xc) و رآكتنس القایی (XL) برابر هستند.

برای تركیبی مثالی برای بار صنعتی كه شامل اندوكتانس بار و یا رآكتنس ترانسفورماتور كه بعنوان XL عمل می كند و رآكتنس خازن تصحیح ضریب توان كه بصورت Xc خودنمایی می كند فركانس تشدیدی برابر با LC خواهیم داشت . رآكتنس خازنی متناسب با فركانس كاهش می یابد (توجه : Xc با فركانس نسبت عكس دارد). در حای كه رآكتنس القایی متناسب با آن افزایش می یابد (توجه

: XL با فركانس نسبت مستقیم دارد).این فركانس تشدید به سبب متغیر بودن الگوی بار متغیر خواهد بود. این مساله برای ظرفیت خازنی ثابت كل برای اصلاح ضریب توان پیچیده تر است. برای درك صحیح این پدیده لازم است دو نوع وضعیت تشدید شامل حالت تشدید سری و حالت تشدید موازی مورد توجه قرار گیرند. این دو امكان در زیر توضیح داده می شوند.

تشدید سری:

یك تركیب سری رآكتنس سلفی – خازنی ، مدار تشدید سری شكل می دهد كه در شكل زیر نشان داده شده است.

به خاطر تركیب سری سلف و خازن ، در فركانس تشدید امپدانس كل به پایین ترین سطح كاهش می یابد و این امپدانس در فركانس تشدید طبیعتی مقاومتی دارد. بنا براین در فركانس تشدید رآكتنس خازنی و رآكتنس سلفی (القایی) برابر هستند.این امپدانس پایین برای توان ورودی در فركانس تشدید ، افزایش توانی جریان را نتیجه می دهد.

در كاربری صنعتی رآكتنس ترانسفورماتور قدرت به علاوه خازنهای اصلاح ضریب توان در سمت ولتاژ پایین به عنوان یك مدار تشدید موازی برای سمت ولتاژ بالای ترانسفورماتور عمل می كند. اگر این فركانس تشدید تركیب سلف و خازن بر فركانس هارمونیك شایع در صنعت منطبق شود ، بخاطر بستری با امپدانس پایین ارائه شده توسط خازن ها برای هارمونیك ها ، منجر به افزایش توانی جریان خازن ها خواهد شد. از این رو خازن های ولتاژ پایین در سطحی بسیار بالا اضافه بار پیدا خواهند كرد كه همچنین این عمل موجب تحمیل بار اضافی بر ترانسفورماتور می شود. این پدیده منجر به تخریب ولتاژ در شبكه ولتاژ پایین می شود.


تشدید موازی:
یك تشدید موازی تركیبی از رآكتنس خازنی و القایی است كه در شكل زیر نمایش داده شده است.

در اینجا رفتار امپدانس برعكس حالت تشدید موازی خواهد بود كه در شكل داده شده در زیر ، نشان داده شده است.در فركانس تشدید امپدانس منتجه مدار به مقداری بالا افزایش می یابد. این ، منجر به بوجود آمدن مدار تشدید موازی میان خازن های اصلاح ضریب توان و اندوكتانس بار می شود كه نتیجه آن عبور ولتاژ بسیار بالا هم اندازه  امپدانس ها و جریان های گردابی بسیار بالا درون حلقه خواهد بود.


در كاربری صنعتی خازن اصلاح ضریب توان مدار تشدید موازی با اندوكتانس بار تشكیل می دهد.هارمونیك های تولید شده از سمت بار رآكتنس شبكه را افزایش می دهند. كه موجب بلوكه شدن هارمونیك های سمت تغذیه می شود.این منجر به تشدید موازی اندوكتانس بار و اندوكتانس خازنی می شود. مدار LC (سلفی – خازنی) مواز ی ، شروع به تشدید میان آنها می كند كه منجر به ولتاژ بسیار بالا و جریان گردابی بسیار بالا در درون حلقه مدار سلف – خازن (LC) می شود. نتیجه این امر آسیب به تمام سمت ولتاژ پایین سامانه الكتریكی است.

ایزوله كردن تشدید موازی از ایزولاسیون تشدید سری نسبتا پیچیده تر است.اساسا این امر بخاطر تنوع بار صنعتی از زمانی به زمان دیگر است كه موجب تغییر فركانس تشدید می شود.


این تغییر مداوم فركانس تشدید ممكن است موجب تطبیق فركانس تشدید بر فركانس هارمونیك شود كه ممكن است منتج به ولتاژ بالا و جریان بالا كه سبب نقص و خرابی تجهیزات الكتریكی می شوند ، گردد.بنا بر این در هر دو تشدید موازی و سری خازنهای قدرت متاثر هستند كه بكار گیری دستگاه های حفاظتی و ایمنی را برای خازنها ایجاب می نماید. این امر درك صحیح بر خازنهای قدرت را قبل از از اعمال تصحیح بخاطر تاثیر هارمونیك ها و تشدید ایجاب می نماید.


خازنهای قدرت:

خازنهای اصلاح ضریب توان نسبت به هارمونیك ها حساس اند و بیشتر عیوب خازنهای قدرت ، عیوبی با طبیعت زیر را نشان می دهند :

هارمونیك ها – هارمونیك های پنجم ، هفتم ، یازدهم ، سیزدهم و ...

تشدید

اضافه ولتاژ

امواج كلید زنی

جریان هجومی

ولتاژ آنی بازگیری جرقه

تخلیه / بازبست ولتاژ

بسته به طراحی ساختاری اساسی ، حدود پایداری در مقابل اضافه ولتاژ ، اضافه جریان و هارمونیكها برای دور كردن خازن از خرابی بسیار مهم است.

اساسا خازن ها امواج كلید زنی تولید می كنند كه عموما به عنوان جریان هجومی و اضافه ولتاژ آنی دسته بندی می شوند.

جریان هجومی پدیده ای است كه هنگام به مدار وصل كردن خازن ها رخ می دهد. امپدانس ارائه شده توسط خازن طبیعتا بسیار كم و مقاومتی است. این امر منجر به جریان هجومی به بزرگی 50 تا 100 برابر جریان اسمی می شود كه از خازن عبور می كند ، اما چرا از خازن؟ زیرا امپدانس ترانسفورماتور در زمان روشن كردن خازن ها فقط در مقابل شار جریان مقاومت می كند.

این امر هنگامی پیچیده تر می گردد كه در تركیب موازی بانك خازنی ممكن است جریان هجومی كلید زنی به سطحی بالاتر از 200 تا 300 برابر جریان اسمی برسد. این جریان هجومی نتیجه تخلیه خازن های از پیش شارژ شده موازی با آن می باشد. در زیر این مطلب نشان داده شده است.نوعا جریان هجومی علاوه بر تخریب در شكل موج جریان سبب تخریب در شكل موج ولتاژ می شود.

در هنگام خاموش كردن (از مدار خارج كردن) خازن ها ، بسته به شارژ ذخیره شده در آن ، اضافه ولتاژ ناگهانی بالاتری در زمان خاموش كردن خازن ها بوجود خواهد آمد كه ممكن است موجب پدید آمدن جرقه در پایه ها شود.

هنگامی كه خازن خاموش می شود شار الكتریكی در خود نگه می دارد و بوسیله مقاومتهای تخلیه ، تخلیه (Discharge) می شود. مدت زمان تخلیه عموما بین 30 تا 60 ثانیه می باشد. تا زمانی كه تخلیه بشكل موثری صورت نگرفته نمی توان خازنها را به مدار باز گرداند. هرگونه بازبست خازن قبل از تخلیه كامل دوباره موجب افزایش جریان هجومی می شود.

علاوه بر دستگاه های مسدود كننده هارمونیك ها كه با صحت خازن ها نسبت مستقیم دارند ، و در سر خط بعدی تشریح می شوند ، دستگاه های تحلیل برنده امواج كلید زنی مثل جریان هجومی ، اضافه ولتاژ آنی و غیره نیاز دارند كه بطور دقیق تعریف و بررسی شوند.


دستگاه های مسدود كننده هارمونیك ها:

برای كاربری سالم خازن ها لازم است كه فركانس تشدید مدار LC (سلف – خازن) كه شامل ادوكتانس بار و خازنهای اصلاح ضریب توان می شود ، به فركانسی دور از كمترین فركانس هارمونیك تغییر داده شود. برای مثال هارمونیك هایی كه در سامانه تولید می شوند و خازن های قدرت را متاثر می سازند ، هارمونیك های پنجم ، هفتم ، یازدهم ، سیزدهم و غیره هستند. پایین ترین هارمونیكی كه بر خازن ها تاثیر می گذارد هارمونیك پنجم است كه در فركانس 250 هرتز دیده می شود. اساسا اگر خازن ها با سلف ها موازی شده باشند ، انتخاب مقدار اندوكتانس به شكل زیر است :

تركیب سری LC (سلف – خازن) در فركانسی زیر 250هرتز تشدید می كند . بنابراین در همه فركانس های هارمونیك ها تركیب سری سلف و خازن مانند یك تركیب سلفی عمل خواهد كرد و امكان تشدید برای هارمونیك پنجم یا هر هارمونیك بالاتری از بین می رود. 

 این تركیب سلف و خازن كه در آن فركانس تشدید در فركانسی دور از فركانس هارمونیك تنظیم شده است ، مدار LC (سلف – خازن) نامیزان شده(De-Tuned) نام دارد. ضریب نا میزان سازی نسبت رآكتنس به طرفیت خازنی است. در مدار خازنی نامیزان شده ، اساسا سلف مانند دستگاه مسدود كننده هارمونیك ها عمل می كند. برای خازن ها ضریب مناسب نامیزان سازی حدود % 7 است كه فركانس تشدید را در 189 هرتز تنظیم می كند.

اما ، نامیزان سازی % 5.67 همچنین در جایی استفاده می شود كه فركانس تشدیدی معادل 210 هرتز دارد . هر دو درجه نامیزان سازی ، مسدود كردن (بلوكه كردن) هارمونیك ها از خازن ها را تضمین می كنند.



بانك های نامیزان سازی خازن:

بانك های نامیزان سازی خازن نیازمند آن هستندكه با نكات اساسی زیر مشخص شوند :

انتخاب درجه نامیزان سازی

محاسبه خازن كل خروجی مورد نیاز

محاسبه افزایش ولتاژ بوسیله سلف های سری

درجه نامیزان سازی مطلوب بر پایه هارمونیك موجود است. لازم است كه هارمونیك های سمت بار اندازه گیری شوند تا در درجه نامیزان تصمیم گیری شود.

*

خروجی خازن و سطح ولتاژ نیاز به انتخاب صحیح بر اساس درجه نامیزان سازی دارند. برای مثال برای %7 نامیزان سازی برای رسیدن به 200 كیلو ولت آمپر رآكتیو خروجی (KVAR) در 400 ولت ، نیاز به آن داریم كه خازن 240 KVAR خروجی با ولتاژ 400 ولت انتخاب نماییم. این بدلیل افزایش ولتاژ بوسیله اندوكتانس سری است. مشابها برای رسیدن به 200 KVAR خروجی در ولتاژ 440 ولت به خازن های 240 KVAR خروجی 480 ولتی نیاز است.

محاسبه افزایش ولتاژ به سبب رآكتنس سری ، بر اساس نامیزان سازی است و به روش زیر انجام می گیرد :

( درجه نامیزان سازی – 1) / (ولتاژ نرمال مجاز) = ولتاژ خازن



سامانه خازنی ایده آل:

برای تصحیح ضریب توان در بار صنعتی كنونی كه شامل هارمونیك ها و تشدید می شود ، یك سامانه اتصال خازنی اساسا باید خصوصیات زیر را دارا باشد :

ظرفیت خازنی متغیر بر اساس توان رآكتیو برای دوری از تغییر فركانس تشدید. این امر انتخاب صحیح پنل های APFC را ممكن می سازد. پنل APFC باید خصوصیات زیر را داشته باشد.

حسگرها باید به طور مداوم سطح هارمونیك های ولتاژ را نمایش دهد و خازن ها را تحت زیر سطوح بالاتر هارمونیك ها محافظت نماید.

انتخاب محدوده هارمونیك های پنجم ، هفتم ، یازدهم ، سیزدهم و همچنین شناخت تخریب همه هارمونیك ها برای تنظیم حدود ایمن و همچنین پیش بینی تغییرات بعدی هارمونیك ها.

مونیتورینگ جریان RMS برای محافظت خازن ها تحت هر حالت تشدید.

كنترل مشخصات ، برای دوری از بكارگیری ظرفیت مازاد خازنی تحت حالت كم بار.

انتخاب خازن با عمر بالا و با تضمین مشخصات زیر :

ظرفیت اضافه بار : حداقل دو برابر جریان اسمی به طور مداوم و 350 برابر آن هنگام جریان هجومی.

قابلیت پایداری در مقابل اضافه ولتاژ :بیشتر از %10 و بالاتر از ولتاژ مجاز بصورت پیوسته.

قابلیت پایداری در مقابل هارمونیك ها : تضمین محدوده های هارمونیك های پنجم ، هفتم ، یازدهم ، سیزدهم و همچنین برای محدوده های THD.

مدار سلفی De – Tuned برای مسدود كردن هارمونیك ها (الگوی هارمونیك بار باید قبل از تعیین درجه نامیزان سازی (De – Tuning) اندازه گیری شود).

انتخاب سطح خازن و سطح ولتاژ براساس درجه نامیزان سازی.

دستگاه های كلیدزنی با تقلیل دهنده های داخلی برای تقلیل امواج كلید زنی برای خازن های قدرت.

اساسا این خصوصیات با مطالعه متناسب هارمونیك های ولتاژ بار همراه است كه تضمین می كند كه تاثیر مخرب هارمونیك ها و تشدید از خازن ها دور شود كه بدین وسیله عمر خازن ها و كارایی كل سامانه الكتریكی را افزایش می دهد.


نتیجه گیری

علم به شرایط و خصوصیات خازن ها و عوامل موثر بر آنها از جمله هارمونیك ها نه تنها موجب افزایش امنیت و سلامتی و طول عمر آنها خواهد شد بلكه سبب كاهش هزینه های پیش بینی شده و نشده در بكار گیری انرژی الكتریكی می شود.


+ نوشته شده توسط فرهاد مقصودی در جمعه بیست و چهارم تیر 1390 و ساعت 13:51 |
مقدمه:

موتورهاي القايي AC عمومي ترين موتورهايي هستند كه در سامانه هاي كنترل حركت صنعتي و همچنين خانگي استفاده مي شوند.طراحي ساده و مستحكم , قيمت ارزان , هزينه نگه داري پايين و اتصال آسان و كامل به يك منبع نيروي AC امتيازات اصلي موتورهاي القايي AC هستند.انواع متنوعي از موتورهاي القايي AC در بازار موجود است.موتورهاي مختلف براي كارهاي مختلفي مناسب اند.با اينكه طراحي موتورهاي القايي AC آسانتر از موتورهاي DC است , ولي كنترل سرعت و گشتاور در انواع مختلف موتورهاي القايي AC نيازمند دركي عميقتر در طراحي و مشخصات در اين نوع موتورهاست.
اين نكته در اساس انواع مختلف , مشخصات آنها , انتخاب شرايط براي كاربريهاي مختلف و روشهاي كنترل مركزي يك موتورهاي القايي AC را مورد بحث قرار مي دهد.


اصل ساخت اوليه و كاربري

مانند بيشتر موتورها , يك موتورهاي القايي AC يك قسمت ثابت بيروني به نام استاتور و يك روتور كه در درون آن مي چرخد دارند , كه ميان آندو يك فاصله دقيق كارشناسي شده وجود دارد.به طور مجازي همه موتورهاي الكتريكي از ميدان مغناطيسي دوار براي گرداندن روتورشان استفاده مي كنند.يك موتور سه فاز القايي AC تنها نوعي است كه در آن ميدان مغناطيسي دوار به طور طبيعي بوسيله استاتور به خاطر طبيعت تغذيه گر آن توليد مي شود.در حالي كه موتورهاي DC به وسيله اي الكتريكي يا مكانيكي براي توليد اين ميدان دوار نياز دارند.يك موتور القايي AC تك فاز نيازمند يك وسيله الكتريكي خارجي براي توليد اين ميدان مغناطيسي چرخشي است.
در درون هر موتور دو سري آهنرباي مغناطيسي تعبيه شده است.در يك موتور القايي AC يك سري از مغناطيس شونده ها به خاطراينكه تغذيه AC به پيچه هاي استاتور متصل است در استاتور تعبيه شده اند.بخاطر طبيعت متناوب تغذيه ولتاژ AC بر اساس قانون لنز نيرويي الكترومغناطيسي به روتور وارد مي شود (درست شبيه ولتاژي كه در ثانويه ترانسفورماتور القا مي شود).بنابر اين سري ديگر از مغناطيس شونده ها خاصيت مغناطيسي پيدا مي كنند.-نام موتور القايي از اينجاست-.تعامل ميان اين مگنت ها انرژي چرخيدن يا تورك (گشتاور) را فراهم  مي آورد.در نتيجه موتور در جهت گشتاو بوجود آمده چرخش مي كند.


استاتور

استاتور از چندين قطعه باريك آلومنيوم يا آهن سبك ساخته شده است.اين قطعات بصورت يك سيلندر تو خالي به هم منگنه و محكم شده اند(هسته استاتور) با شيارهايي كه در شكا يك نشان داده شده اند.سيم پيچهايي از سيم روكش دار در اين شيارها جاسازي شده اند.هر گروه پيچه با هسته اي كه آن را فرا گرفته يك آهنرباي مغناطيسي (با دو پل) را براي كار كردن با تغذيه AC شكل مي دهد.تعداد قطبهاي يك موتور القايي AC به اتصال دروني پيچه هاي استاتوربستگي دارد.پيچه هاي استاتور مستقيما به منبع انرژي متصل اند.آنها به صورتي متصل اند كه با برقراري تغذيه AC يك ميدان مغناطيسي چرخنده توليد مي شود.



روتور

روتور از چندين قطعه مجزاي باريك فولادي كه ميانشان ميله هايي از مس يا آلومنيوم تعبيه شده ساخته شده است.در رايج ترين نوع روتور (روتور قفس سنجابي) اين ميله ها در انتهاي خود به صورت الكتريكي و مكانيكي بوسيله حلقه هايي به هم متصل شده اند.تقريبا 90 درصد از موتورهاي القايي داراي روتور قفس سنجابي مي باشند و اين به خاطر آن است كه اين نوع روتور ساختي مستحكم و ساده دارد.اين روتور از هسته اي چند تكه استوانه اي با محوري كه شكافهاي موازي براي جادادن رساناها درون آن دارد تشكيل شده است.هر شكاف يك ميله مسي يا آلومنيومي يا آلياژي را شامل مي شود.در اين ميله ها به طور دائمي بوسيله حلقه هاي انتهايي آنها همچنان كه در شكل دو مشاهده مي شود مدار كوتاه برقرار است.چون اين نوع مونتاژ درست شبيه قفس سنجاب است , اين نام براي آن انتخاب شده است.ميله اي روتور دقيقا با محور موازي نيستند.در عوض به دو دليل مهم قدري اريب نصب مي شوند.
دليل اول آنكه موتور با كاهش صوت مغناطيسي بدون صدا كاركرده و براي آنكه از هارمونيكها در شكافها كاسته شود.
دليل دوم آن است كه گرايش روتور به هنگ كردن كمتر شود.دندانه هاي روتور به خاطر جذب مغناطيسي مستقيم (محض) تلاش مي كنند كه در مقابل دندانه هاي استاتور باقي بمانند.اين اتفاق هنگامي مي افتد كه تعداد دندانه هاي روتور و استاتور برابر باشند.
روتور بوسيله مهار هايي در دو انتها روي محور نصب شده ; يك انتهاي محور در حالت طبيعي براي انتقال نيرو بلندتر از طرف ديگر گرفته مي شود.ممكن است بعضي موتورها محوري فرعي در طرف ديگر(غير گردنده - غير منتقل كننده نيرو) براي اتصال دستگاههاي حسگر حالت(وضعيت) و سرعت داشته باشند.بين استاتور و روتور شكافي هوايي موجود است.بعلت القا انرژي از استاتور به روتور منتقل مي شود.تورك توليد شده به روتور نيرو داده و سپس براي چرخيدن به آن نيرو مي كند.صرف نظر از روتور استفاده شده قواعد كلي براي دوران يكي است.



سرعت يك موتور القايي

ميدان مغناطيسي اي كه در استاتور توليد ميشود با سرعت سنكرون مي چرخد.(Ns)



در روتور ميدان مغناطيسي توليد مي شود زيرا به طور طبيعي ولتاژ متناوب است.
براي كاهش سرعت نسبي نسبت به (شار)استاتور , روتور چرخش را در همان جهتي كه شار استاتور دارد آغاز مي كند و تلاش مي كند تا به سرعت چرخش فلاكس نايل شود.با اينحال روتور هرگز موفق نمي شود كه به سرعت ميدان استاتور برسد.روتور از سرعت ميدان استاتور كندتر مي گردد.اين سرعت Base speed نام دارد.(Nb)
تفاوتها ميان Ns و Nb Slip نام دارد.اسليپ مقادير مختلف فشار(مكانيكي) بستگي دارد.هر افزايشي در فشار موجب كندتر كار كردن روتور و افزايش اسليپ مي شود.برعكس كاهش فشار سبب سرعت گرفتن روتور و كاهش اسليپ مي شود.اسليپ بوسيله درصد نشان داده شده و با فرمول زير مشخص مي شود.



انواع موتورهاي القايي

عموما دسته بندي موتورهاي القاي براساس تعداد پيچه هاي استاتور است كه عبارتند از:
موتورهاي القايي تك فاز
موتورهاي القايي سه فاز

موتورهاي القايي تك فاز

احتمالا بيشتر از كل انواع موتورها از موتورهاي القايي AC تك فاز استفاده مي شود.منطقي است كه بايد موتورهاي داراي كمترين گراني و هزينه نگه داري بيشتر استفاده شود. موتور القايي AC تك فاز بهترين مصداق اين توصيف است.آن طور كه از نام آن برميايد اين نوع از موتور تنها يك پيچه (پيچه اصلي) دارد و با يك منبع تغذيه تك فاز كار مي كند.در تمام موتورهاي القايي تك فاز روتور از نوع قفس سنجابي است.
موتور القايي تك فاز خود راه انداز نيست.هنگامي كه موتور به يك تغذيه تك فاز متصل است پيچه اصلي داراي جرياني متناوب مي شود.اين جريان متناوب ميدان مغناطيسي اي ضرباني توليد مي كند.بسبب القا روتور تحريك مي شود.چون ميدان مغناطيسي اصلي ضرباني است توركي كه براي چرخش موتور لازم است بوجود نمي آيد و سبب ارتعاش روتور و نه چرخش آن مي شود.از اين رو موتور القايي تك فاز به دستگاه آغاز گري نياز داردكه مي تواندضربات آغازي را براي چرخش موتور توليد كند.
دستگاه آغاز گر موتورهاي القايي تك فاز اساسا پيچه اي اضافي در استاتور است (پيچه كمكي) كه در شكل سه نشان داده شده است.پيچه استارت مي تواند داراي خازنهاي سري ويا سوئيچ گريز از مركز باشد.هنگامي كه ولتاژ تغذيه برقرار است جريان در پيچه اصلي بسبب مقاومت پيچه اصلي ولتاژتغذيه را افت ميدهد (ولتاژ به جريان تبديل مي شود).در همين حين جريان در پيچه استارت بسته به مقاومت دستگاه استارت به افزايش ولتاژ تغذيه تبديل مي شود.فعل و انفعال ميان ميدانهاي مغناطيسي كه پيچه اصلي و دستگاه استارت مي سازند ميدان برايندي ميسازند كه در جهتي گردش مي كند.موتور گردش را در جهت اين ميدان برايند آغاز ميكند.
هنگامي كه موتور به 75 درصد دور مجاز خود مي رسد يك سوئيچ گريز از مركز پيچه استارت را از مدار خارج مي كند.از اين لحظه به بعد موتور تك فاز مي تواند تورك كافي را براي ادامه كاركرد خود نگه دارد.
بجز انواع خاص داراي Capacitor start / capacitor run عموماهمه موتورهاي تك فاز فقط براي كاربري هاي بالاي 3/4 hp استفاده مي شوند.
بسته به انواع تكنيكهاي استارت موتورهاي القايي تك فاز AC در دسته بندي اي وسيع آن گونه كه در شكل زير توصيف شده قرار دارند.



موتور القايي AC فاز شكسته

موتور فاز شكسته همچنين به عنوان Induction start/Induction run (استارت القايي/كاركرد القايي)هم شناخته مي شود كه دو پيچه دارد.پيچه استارت از سيم نازكتر و تعداد دور كمتر نسبت به پيچه اصلي براي بوجود آوردن مقاومت بيشتر ساخته شده است.همچنين ميدان پيچه استارت در زاويه اي غير از آنچه كه پيچه اصلي دارد قرار مي گيرد كه سبب آغاز چرخش موتور مي شود.پيچه اصلي كه از سيم ضخيم تري ساخته شده است موتور را هميشه درحالت چرخش باقي نگه مي دارد.



تورك آغازين كم است مثلا 100 تا 175 درصد تورك ارزيابي شده.موتور براي استارت جرياني زياد طلب مي كند.تقريبا 700 تا 1000 درصد جريان ارزيابي شده.تورك بيشينه توليد شده نيز در محدوده 250 تا 350 درصد از تورك براوردشده مي باشد.(براي مشاهده منحني سرعت – گشتاور به شكل 9نگاه كنيد).
كاربريهاي خوب براي موتورهاي فاز شكسته شامل سمباده (آسياب) هاي كوچك , دمنده ها و فنهاي كوچك و ديگر دستگاههايي با نياز به تورك آغازين كم با و نياز به قدرت 1/20 تا 1/3 اسب بخار مي باشد.از استفاده از اين موتورها در كاربريهايي كه به دوره هاي خاموش و روشن و گشتاور زياد نيازدارند خود داري نماييد.

موتور القايي با استارت خازني

اين نوع , موتور اصلاح شده فاز شكسته با خازني سري با آن براي بهبود استارت است.همانند موتور معمولي فاز شكسته اين نوع موتور يك سوئيچ گريز از مركز داشته كه هنگامي كه موتور به 75 درصد سرعت ارزيابي شده مي رسد , پيچه استارت را از مدار خارج مي نمايد.از آنجا كه خازن با مدار استارت موازي است , گشتاور استارت بيشتري توليد مي كند , معمولا در حدود 200 تا 400 درصد گشتاور ارزيابي شده.و جريان استارت معمولا بين 450 تا 575 درصد جريان ارزيابي شده است.كه بسيار كمتر از موتور فاز شكسته و بعلت سيم ضخيمتر در مدار استارت است.براي منحني سرعت گشتاور به شكل 9 مراجعه كنيد.
نوع اصلاح شده اي از موتو با استارت خازني ، موتور با استارت مقاومتي است.در اين نوع موتور خازن استارت با يك مقاومت جايگزين شده است.موتور استارت مقاومتي در كاربريهايي مورد استفاده قرار مي گيرد كه ميزان گشتاور استارتينگي كمتر از مقداري كه موتور استارت خازني توليد مي كند لازم است.صرف نظر از هزينه اين موتور امتيازات عمده اي نسبت به موتور استارت خازني ندارد.



اين موتورها در انواع مختلف كاربريهاي پولي و تسمه اي مانند تسمه نقاله هاي كوچك , پمپها و دمنده هاي بزرگ به خوبي بسياري از خود گردانها و كاربريهاي چرخ دنده اي استفاده مي شوند.

موتورهاي AC القايي با خازن دائمي اسپليت

اين موتور (PSC) نوعي خازن دائما متصل به صورت سري به پيچه استارت دارد.اين كار سبب آن ميشود كه پيچه استارت تازماني كه موتور به سرعت چرخش خود برسد بصورت پيچه اي كمكي عمل كند.از آنجا كه خازن عملكرد اصلي , بايد براي استفاده مداوم طراحي شده باشد , نميتواند توان استارتي معادل يك موتور استارت خازني ايجاد نمايد.گشتاور استارت يك موتور (PSC) معمولا كم و در حدود 30 تا 150 درصد گشتاور ارزيابي شده است.موتورهاي (PSC) جريان استارتي پايين , معمولا در كمتر از 200 درصد جريان برآورد شده دارند كه آنها را براي كاربريهايي با سرعتهاي داراي چرخه هاي خاموش روشن بالا بسيار مناسب ميسازد.براي منحني سرعت – گشتاور به شكل 9 مراجعه كنيد.
موتورهاي PSC امتيازات فراواني دارند.طراحي موتور براحتي براي استفاده با كنترل كننده هاي سرعت ميتواند اصلاح شود.همچنين مي توانند براي بازدهي بهينه و ضريب توان بالا در فشار برآورد شده طراحي شوند.آنها به عنوان قابل اطمينان ترين موتور تك فاز مطرح ميشوند.مخصوصا به اين خاطر كه به سوئيچ گريز از مركز نيازي ندارند.



موتورهاي PSC بسته به طراحيشان كاربري بسيار متنوعي دارند كه شامل فنها , دمنده ها با نياز به گشتاور استارت كم و چرخه هاي كاري غير دائمي مانند تنظيم دستگاهها (طرز كارها) , عملگر درگاهها و بازكننده هاي درب گاراژها ميشود.

موتورهاي AC القايي استارت با خازن/ كاركرد با خازن

اين موتور , همانند موتور با استارت خازن , خازني از نوع استارتي در حالت سري با پيچه كمكي براي گشتاور زياد استارت دارد.همچنين مانند يك موتور PSC خازني از نوع كاركرد كه دركنار خازن استارت در حالت سري با پيچه كمكي است كه بعد از شروع به كار موتور از مدار خارج مي شود.اين حالت سبب بوجود آمدن گشتاوري در حد اضافي مي شود.



اين نوع موتور مي تواند ... و بازده بيشتر طراحي شود.(منحني سرعت – گشتاور در شكل 9 را ببينيد).اين موتور بخاطر خازنهاي كاركرد و استارت و سوئيچ گريز از مركز آن پرهزينه است.
اين موتور مي تواند در بسياري از كاربريهايي كه از هرموتور تك فاز ديگري انتظار ميرود استفاده شود.اين كاربريها شامل ماشينهاي مرتبط با چوب , كمپرسورهاي هوا , پمپهاي آب فشار قوي , پمپهاي تخليه و ديگر كاربردهاي نيازمند گشتاورهاي بالا در حد 1 تا 10 اسب بخار مي شوند.

موتور القايي AC با قطب سايه دار

موتورهاي با قطب سايه دار فقط يك پيچه اصلي دارند و پيچه استارت ندارند.استارت خوردن بوسيله طرح خاص آن كه حلقه پيوسته مسي اي را دور قسمت كوچكي از هر قطب موتور حلقه مي كند انجام مي شود.اين سايه كه قطب را دو تكه مي كند سبب مي شود كه ميدان مغناطيسي اي ضعيفتر در ناحيه سايه خورده نسبت به قسمت ديگر و در كنار آن بوجود آيد.تعامل ميان ميدانها محور را به چرخش وامي دارد.
چون موتور با قطب سايه خورده پيچه استارت , سوئيچ استارت ويا خازن ندارد از نظر الكتريكي ساده و ارزان است.همچنين سرعت آن راصرفا با تغيير ولتاژ يا بوسيله يك پيچه با چند دور مختلف مي توان كنترل كرد.


ساخت موتور با قطب سايه خورده از نظر مكانيكي اجازه توليد انبوه را ميدهد.درحقيقت اين موتورها به موتورهاي يك بار مصرف معروفند.بدين معني كه جايگزين كردن آنها ارزانتر از تعمير آنهاست.



موتورهاي با قطب سايه دار بسياري مشخصات مثبت دارند.اما چندين مورد بي فايدگي هم دارند.گشتاور استارت كم آن معمولا 25 تا 75 درصد گشتاور برآوردي است.اين موتور موتوري با اتلاف بالاست كه سرعتي حدود 7 تا 10 درصد سرعت سنكرون دارد.عموما بازده اين نوع موتور بسيار پايين است (زير 20 درصد).
هزينه اوليه پايين آن را براي قدرت كمتر يا كاربردهاي با كار كمتر مناسب مي سازد.شايد وسيعترين استفاده از آنها در فنهاي چند سرعته براي استفاده خانگي است.ولي گشتاور كم موتور داراي قطب سايه دار را براي بيشتر كاربريهاي صنعتي يا تجاري كه در آنها كار مداوم يا چرخه هاي گردش بيشتر معمول است غير قابل استفاده مي كند.شكل 9 منحني سرعت - گشتاور را براي انواع موتور القايي AC تك فاز نشان مي دهد.



موتور القايي AC سه فاز

موتورهاي القايي AC سه فاز به طور گسترده در كاربريهاي تجاري و صنعتي استفاده مي شوند.آنها هم به عنوان موتورهايي با روتور پيچ خورده يا قفس سنجابي دسته بندي مي شوند.
اين موتورها خود استارت هستند و از هيچ خازن يا پيچه استارت يا سوئيچ گريز از مركز يا دستگاه آغازگري استفاده نمي كنند.
آنها گشتاور آغازين در درجه هاي متوسط يا بالا توليد مي نمايند.محدوده نيروي توليدي و بازده اين موتورها از متوسط تا بالا با مشابه هاي تك فازشان مقايسه مي شود.استفاده هاي عمومي آنها مانند آسيابها (و ليث ها دستگاه برنده و فرم دهنده چوب و فلز) مته فشاري پمپها كمپرسورها تسمه نقاله ها همچنين دستگاههاي چاپ دستگاههاي مزرعه سرمايش در الكترونيك و ديگر كاربريهاي مكانيكي است.

موتور قفس سنجابي

تقريبا 90 درصد موتورهاي القايي AC سه فاز از اين نوعند.كه روتور آنها از نوع قفس سنجابي است كه در ابتدا توضيح داده شد.محدوده هاي طبقه بندي نيروي آنها از يك سوم تا چند صد اسب بخار است.موتورهاي اين نوعي كه در دسته يك اسب بخار به بالا اند در مقايسه با مشابه هاي تك فاز كم هزينه ترند و ميتوانند در استارت در فشارهاي سنگينتر بكار كنند.

موتور با روتور پيچشي

موتور با حلقه لغزان يا موتور روتور پيچشي نوعي از موتور القايي قفس سنجابي است.درحالي كه استاتور در اين موتور همانند موتور قفس سنجابي است يك سري از پيچه ها را روي روتور خود دارد كه در حالت مداركوتاه نيستند ولي به يك سري از رينگهاي لغزان ختم مي شوند.اين پيچه ها در اضافه كردن مقاومتها و خازنهاي خارجي سودمندند.اسليپ لازم براي توليد گشتاور بيشينه نهايي مستقيما با مقاومت روتور متناسب است.در موتور با حلقه لغزان مقاومت موثر روتور با اضافه كردن مقاومت خارجي ميان حلقه هاي لغزان كاهش ميابد.
بنابراين امكان بدست آوردن لغزش بيشتر و همچنين گشتاور بيشينه نهايي در سرعتهاي كمتر وجود دارد.
يك مقاومت خارجي مي توانددر سرعت تقريبا صفر را نتيجه دهد كه گشتاو بيشينه نهايي بسيار زيادي با جريان استارت كم را توليد مي كند.هنگامي كه موتور شتاب مي گيرد مقدار مقاومت مي تواند كاهش يابد تا مشخصات موتور براي كارهايي با فشار زياد مناسب شود.هنگامي كه موتور به سرعت اصلي ميرسد خازنهاي خارجي از مدار خارج مي شوند و اين يدين معني است كه اكنون موتور به عنوان يك موتور القايي استاندارد كار مي كند.
اين نوع موتور براي فشارهاي مانا (كارهايي با فشار ثابت) كه درآنها گشتاور نهايي بايد در سرعت تقريبا صفر توليد شده و موتور دركمترين زمان و با كمترين مصرف جريان تا سرعت بيشينه شتاب گيرد ايده آل است.***



قسمت پاييني موتور با حلقه لغزان كه در آن حلقه ها به همراه مجموعه براشها است به نگهداري منظم نياز داردكه از نظر قيمت , استاندارد بودن آن را به عنوان يك موتور قفس سنجابي غير ممكن مي كند.اگر پيچه ها كوتاهتر شوده و استارت زده شود معمولا جريان بالااز روتور در حالت متوقف عبورمي كند كه در حد 1400 درصد است.درحاليكه در اين حالت درآن گشتاوري در حد 60درصد توليد مينمايد كه در بسياري از كاربريها چنين امكان پشتيباني چنين چيزي نيست.با تغيير مقاومتهاي روتور منحني سرعت گشتاور تعديل مي گرددكه بدان وسيله سرعتي كه درآن موتور در فشاري مخصوص كارمي كند تعديل مي شود.ظرفيت تكميل فشار ميتواند سرعت را تا 50درصد سرعت سنكرون كاهش دهد.خصوصا هنگامي كه فشار , از انواعي با نياز به گشتاور – سرعتهاي مختلف مثل پرسهاي چاپ يا كمپرسورها است.كاهش سرعت تا زير 50درصد بازده را به خاطر اتلاف انرژي در مقاومتها به شدت كاهش ميدهد.اين نوع موتور در كاربريهايي با چرخش با گشتاور و سرعتهاي مختلف مانند پرسهاي چاپ , كمپرسورها , تسمه نقاله ها , بالابرنده ها و آسانسورها مورد استفاده قرار مي گيرد.

معادله كنترل گشتاور عملكرد موتور

سيستم بار موتور ميتواند بوسيله معادله اساسي زير بيان شود.



براي چرخشهايي با ماند ثابت داريم:



اين نشان ميدهد كه گشتاور ايجادشده توسط موتوربا گشتاوربار نسبت عكس دارد.
مولفه گشتاور  گشتاور پويا ناميده مي شود زيرا فقط در اعمال زودگذر و آني ظاهر ميشود.اينكه چرخش تسريع يا كند ميشود به اين بستگي دارد كه T از T1 بزرگتر يا كوچكتر باشد.در هنگام شتاب گيري موتور نبايد تنها گشتاور بار راتغذيه كند بلكه بايد مولفه گشتاور اضافي اي را  براي چيره شدن به اينرسي داشته باشد.در درايوهايي با اينرسي بزرگ مانند قطارهاي الكتريكي گشتاور موتور براي مقدار بسيار كافي شتابگيري بايد از گشتاور بار تجاوز كند.در درايوهايي با نياز به واكنش سريع گشتاور موتور بايد در بالاترين مقدارنگه داشته شده و سيستم بار موتور با كمترين مقدار ممكن اينرسي طراحي شده باشد.انرژي مربوط به گشتاور پويا  بصورت انرژي جنبشي (KE) بوجود آمده  ذخيره مي شود.در زمان شتابگيري گشتاور پويا  علامت منفي دارد.ازين رو به گشتاور توليدي موتور T و حفظ تحرك چرخش بوسيله استخراج انرژي از انرژي جنبشي ذخيره شده كمك مي كند.
براي خلاصه , براي حالت دائمي چرخش موتورگشتاوري توليدي موتورT بايد هميشه با گشتاور لازم بارT1 برابر باشد.
منحني سرعت گشتاور موتور القايي سه فاز معمولي در شكل 11 نشان داده شده است.

ويژگي استارتينگ

موتورهاي القايي درحالت خاموش مانند يك ترانسفورماتور درمدار كوتاه عمل مي كنند و اگر كاملا به منبع ولتاژ متصل شوند جرياني بسيار بزرگ مي كشند كه اين جريان به جريان روتور قفل شده معروف است. همچنين گشتاوري توليد مي كند كه به گشتاور روتور قفل شناخته مي شود.گشتاور روتور قفل (LRT) و جريان روتور قفل (LRC) تابع ولتاژ پايانه و تابع طراحي آن مي باشند.هنگامي كه موتور شتاب مي گيرد اگر ولتاژ ثابت نگه داشته شود هردوي گشتاور و جريان تلاش مي كنند كه سرعت روتور را تغير دهند.
جريان استارت يك موتور با ولتاژ ثابت با شتاب گرفتن موتوربطوربسيار آهسته كاهش ميابد و صرفا روند نزولي ميابد.به خصوص وقتي كه موتور به 80 درصد سرعت كامل خود ميرسد.منحنيهاي واقعي براي موتورهاي القايي ميتوانند ميان طراحي هاي مختلف بسياربسيارمتفاوت باشند ولي عموما گرايش آنها به جريان بالاست تا وقتي كه متور تقريبا به سرعت كامل ميرسد.LRC يك موتور ميتواند در محدوده از500 درصد تا 1400 درصد جريان ظرفيت تكميل (FLC) باشد.معمولا موتورهاي خوب در محدوده 550 تا 750درصد از FLC مياشند.
گشتاور استارت يك موتور القايي كه با ولتاژ ثابت آغاز به كار مي كند , كمي به گشتاور كمينه افت مي كند كه به Pull-Up torque شناخته مي شود.و با شتاب گرفتن موتور در تقريبا سرعت بيشينه به يك گشتاور بيشينه افزايش يافته كه به گشتاور شكست يا Pull-Out torque معروف است و سپس در سرعت سنكرون به صفر نزول مي كند.منحني گشتاور استارت برخلاف سرعت روتور به ولتاژ پايانه و طراحي روتور بستگي دارد.
LRT يك موتور القايي ميتواند از مقدار كم 60 درصد FLT تا 350 درصد آن تغيير كند.Pull-Up torque نيز مي تواند به كمي 40 درصد FLT و گشتاور شكست هم مي تواند تا حد 350 درصد FLT باشد.معمولا LRT ها براي موتورهاي بزرگ تا متوسط دستورا 120 تا 280 درصد FLT ميباشد.ضريب توان (PF) با شتاب گرفتن موتور از استارت از .1 تا .25  به مقدار بيشينه افزايش يافته وسپس با رسيدن موتور به سرعت نهايي دوباره سقوط مينمايد.

ويژگي عملكرد

هنگامي كه موتوربه سرعت خود سرعتي كه به تعداد قطبهاي استاتور مربوط است رسيده است در ميزان خطاي كمي نسبت به سرعت سنكرون(Slip) كار مي كند.معمولا ميزان اين كاستي براي يك موتور قفس سنجابي كمتر از 5 درصد است.اسليپ حقيقي نوع خاصي از موتور به طراحي آن بستگي دارد.معمولا سرعت اصلي يك موتور القايي چهار قطبي بين 1420 تا 1480 دور در دقيقه در فركانس 50 هرتز متغير است.در حالي كه سرعت سنكرون 1500 دور در دقيقه در فركانس 50 هرتز است.
ولتاژ كشيده شده توسط موتور القايي دو جزء دارد:جزءانفعالي (جريان مغناطيسي سازي) و مولفه موثر (جريان كاري).جريان مغناطيسي سازي مستقل از بار ولي وابسته به طراحي و ولتاژ استاتور مي باشد.جريان مغناطيسي سازي حقيقي موتور القايي مي تواند از مقدار كم 20 درصد FLC براي دستگاه بزرگ دو پل تا بزرگي 60 درصد براي نمونه كوچك هشت پل متغير باشد.جريان كاري موتوربا بار نسبت مستقيم دارد.
گرايش دستگاههاي بزرگ و پرسرعت به ارائه دادن جريان مغناطيسي سازي كم است درحالي كه گرايش ماشينهاي كوچك و كم سرعت به جريان بالاي مغناطيسي سازي ميباشد.يك موتور معمولي در سايز متوسط و با چهار پلجريان مغناطيسي سازي اي معادل 33 درصد FLC دارد.
يك جريان كم مغناطيسي سازي اتلاف كم آهن را دربردارد در حالي كه جريان بزرگ مغناطيسي سازي افزايش در اتلاف آهن و درنتيجه كاهش بازده عملكرد را در پي دارد.
معمولا بازده عملكرد يك موتور القايي در سه چهارم ظرفيت حداكثر است و از 60درصد براي موتورهاي كوچك كم سرعت تا بيش از 92درصد براي موتورهاي بزرگ پرسرعت متنوع است.ضرايب توان و بازده ها عموما در مشخصات موتورها ذكر شده است.

مشخصه بار

در واقعيت كاربريهايي با مقادير مختلف بار با منحنيهاي مختلف سرعت گشتاور وجود دارد.براي نمونه: گشتاور ثابت با بار با سرعت متغير(در كمپرسورهاي پيچشي تسمه نقاله ها تغذيه كننده ها) , گشتاور متغير با بار با سرعت متغير(در فن , پمپ) , توان بار ثابت(در محركهاي انقباضي) , توان و گشتاور بار ثابت(در محركهاي سيم پيچي) و گشتاور بالاي استارت و دورگرفتن ناگهاني كه در گشتاور ثابت بار(در پمپهاي پيچشي , فشرده سازها) مشاهده مي شود.
گفته مي شود سيستم بار موتور پايدار است هرگاه گشتاور توليدي موتور با گشتاور مورد نياز بار برابر باشد.در اين حالت موتور در يك سرعت ثابت در حالتي مانا كار مي كند.پاسخگويي موتور به هر اختلال ايده اي در مورد پايداري سيستم بار آن به ما ميدهد.اين مفهوم به ما در انتخاب سريع نوع موتور براي كاربري خاصي كمك مي كند.
در بيشتر كاربريها , واحد زماني الكتريكي در مقابل واحد زماني مكانيكي آن ناچيز است.ازين رو درهنگام اعمال آني ميتوان موتور را در تعادل الكتريكي فرض كرد كه بر اينكه منحني سرعت – گشتاور حالت پايدار براي اعمال آني نيز صادق است دلالت دارد.
بعنوان نمونه شكل 12 منحنيهاي سرعت – گشتاور موتوري با دو بار مختلف نشان ميدهد.ميتوان سامانه را بعد از به حالت اول بازگشتن پس از كمي تغيير به سبب اختلالي در موتور يا بار ثابت ناميد.
براي نمونه اختلال سبب كاهش   در سرعت ميشود.درحالت اول در سرعتي جديد گشتاور موتور T از گشتاور بار T1 بزرگتر است.بنابراين موتور شتاب گرفته و عمليات به X باز خواهد گشت.به طور مشابه افزايش  در سرعت كه بوسيله يك اختلال بوجود ميايد و گشتاور بار را از گشتاور موتور بيشتر خواهد كرد كاهش سرعت موتور وبازگشت حالت عمليات به نقطه X را نتيجه ميدهد.بنابراين سيستم در نقطه X پادار است.
در حالت دوم كاهش سرعت سبب بيشتر شدن گشتاور بار از گشتاور مووتور ميشود.چرخش كل كند شده و حالت دستگاه از نقطه Y دور ميشود.به طور مشابه افزايشيدر سرعت گشتاور موتور را از گشتاور بار فزوني داده كه موجب دور شدن بيشتر حالت دستگاه از نقطه Y ميشود.بنابر اين سامانه در نقطه Y ناپايدار است.
اين نشان ميدهد كه موتور انتخاب شده براي كاربري در حالت اول صحيح است و انتخاب دوم انتخابي اشتباه ميباشد و براي عمل مورد نظر بايد تغيير كند.



انوع بار با منحنيهاي سرعت – گشتاورشان در زيردرصفحه ی بعدتوضيح داده شده اند.
+ نوشته شده توسط فرهاد مقصودی در دوشنبه هشتم فروردین 1390 و ساعت 13:30 |
بارهاي با سرعت متغير و گشتاور ثابت

گشتاوري كه اين نوع بارها نيازدارند صرفنظر از سرعت , ثابت اند.درمقابل نيرو با سرعت نسبت خطي دارد.دستگاههايي نظير كمپرسورهاي پيچشي , تسمه نقاله ها و تغذيه گرها(سوخت رسانها) چنين مشخصات باري دارند.



بارهاي با گشتاور متغير و سرعت متغير

اين عمومي ترين نوع بار درصنايع بوده و بيشتر اوقات به عنوان بار با گشتاور نمايي شناخته ميشود.درحالي كه نيرو مكعب سرعت است گشتاور مربع سرعت ميباشد.اين مشخصات معمول سرعت – گشتاور يك فن يا پمپ است.



بارهاي با توان ثابت

اين نوع بار كمياب است ولي گاهي در صنايع مورد استفاده دارد.درحالي كه گشتاور تغيير مي كند توان ثابت استگشتاور با سرعت نسبت عكس داشته كه به طور نظري گشتاور بينهايت در سرعت صفر و سرعت بينهايت در گشتاور صفر را در بر دارد.در عمل هميشه به مقدار متناهي گشتاور شكست نياز است.اين نوع بار مشخصه محرركهاي انقباضي است كه براي شتابگيري اوليه به گشتاور بالا در سرعت پايين و گشتاوري بسيار كاهش يافته در هنگام كاركرد نياز دارد.



بارهاي با توان ثابت و گشتاور ثابت

اين نوع بار در كارخانه كاغذ استفاده ميشود.در اين نوع بار درحاليكه سرعت افزايش ميابد , گشتاور ثابت مانده و توان بشكل خطي افزايش ميابد.هنگامي كه گشتاور شروع به كاهش مي كند آنگاه توان ثابت مي ماند.



گشتاور استارت و دورگيري بالا و در ادامه گشتاور ثابت

اين نوع بار با گشتاوري بسيار بالا در بسامدهايي نسبتا كم مشخص ميشود.در كاربريهايي نظير فشرده سازها و پمپهاي پيچشي.



استانداردهاي موتور

درسراسر جهان استانداردهاي مختلفي براي تبيين كاربريها و پارامترهاي ساختماني يك موتور موجود است.دو نوع استاندارد كه بيش از همه مورد استفاده قرار مي گيرد عبارتند از:NEMA (انجمن ملي سازندگان الكتريكي) و IEC (كميته بين المللي الكتروتكنيكي).


NEMA

NEMA براي بسياري از محصولات الكتريكي شامل موتورها استاندارد قرار ميدهد.NEMA اصولا استاندارد موتورهاي مورد استفاده در آمريكاي شمالي است.استانداردهاي معتبر لياقتهاي عمومي صنعتي را بيان مي كنند و بوسيله جامعه الكتريكي پشتيباني ميشوند.اين استانداردها را مي توان در نشريه شماره MG1 NEMA يافت.ممكن است بعضي موتورهاي بزرگ AC تحت اين استاندارد قرار نگيرند.اين موتورها براي مواجهه با نياز در نوع خاصي از كاربري ساخته شده اند كه جزء موتورهاي NEMA محسوب نميشوند.***


IEC

IEC سازماني اروپايي است كه استانداردهاي الكتريكي و مكانيكي را از بين همه چيز براي موتورها در سراسر جهان منتشر ميكند و ترفيع مي دهد.در شرايط عادي ميتوان گفت كه IEC همتاي بين المللي NEMA ميباشد.دربسياري ازكشورها موتورهاي مورد استفاده تحت استاندارد IEC ميباشند.اين استانداردها را ميتوان در IEC 34-1-16 يافت.***
به طور عمده استانداردهاي NEMA چهار نوع طراحي را براي موتورهاي AC القايي مشخص مي كنند.(طرح A-B-C-D).منحنيهاي سرعت – گشتاور نوعي آنها در شكل 18 نشان داده شده است.



طرح A گشتاور استارت طبيعي (بين 150 تا 170درصد مجاز) و جريان استارت نسبتا بالا دارد.گشتاور شكست آن در ميان همه طرحهاي NEMA بالاترين مقدار است كه موتور را قادر ميسازد تا با اضافه بارهاي بسيار سنگين براي مدتي كوتاه سروكار داشته باشد.ميزان اختلاف(Slip) 5درصد است.نوعي از استعمال آن در نيرودهي به ماشينهاي قالبدهي تزريقي است.
طرح B معملي ترين نوع موتور القايي AC است كه بفروش ميرسد.مانند طرح A گشتاور استارتي طبيعي داشته ولي جريان استارتي پايين دارد.گشتاور روتور قفل , درآن آنقدر خوب هست كه بسياري از بارهايي را كه در كاربري صنعتي با آنها مواجه ميشود بكار بيندازد.اختلاف(Slip) آن 5درصد است.بازده و ضريب توان ظرفيت تكميل(PF) آن نسبتا بالا بوده درضمن معروفيت طرح آن.از انواع كاربردهاي آن ميتوان به پمپها فنها و ماشين ابزارها اشاره كرد.
طرح C با گشتاور استارتي بالا(بالاتر از دونوع قبلي , 200درصد اسمي) , مناسب براي استفاده در بارهايي با شروع بكار ناگهاني مانند نقاله ها خرد كننده ها دستگاههاي پرتحرك همزنها و پمپهاي دوطرفه و كمپرسورها است.اين موتورها نامزد استفاده در عملياتي با سرعت نزديك به سرعت تمام بدون اضافه بارهاي بزرگ هستند.اختلاف (Slip) در آنها 5درصد ميباشد.
طرح D گشتاور بالايي (بالاتر از همه مدلهايNEMA) دارد.جريان استارت و سرعت ظرفيت تكميل در آن كمند.مقدار بالاي اختلاف (5تا13درصد)اين موتور را براي كاربريهايي با بارهاي متغير و با تغييرات برجسته در سرعت موتورمانند ماشين آلاتي با ذخيره ساز انرژي چرخ طيار پرسهاي منگنه قيچيها آسانسورها استخراج كننده ها بالابرها جرثقيلها پمپهاي چاه نفت ماشينهاي سيمپيچي و غيره مناسب ميسازد.تنظيم سرعت درآنها ضعيف است و آنها را فقط براي استفاده در پرسهاي منگنه جرثقيلها آسانسورها و پمپهاي چاه نفت مناسب مي گرداند.معمولا اين موتور به عنوان مورد سفارشي مطرح ميشود.
بتازگي NEMA طرحي جديد(طرح D) را به استانداردش براي موتور القايي افزوده است.طرح E شبيه طرح B است با اين تفاوت كه بازدهي بالاتر جريان استارتي بالا تر و جريان كاركرد در اضافه باري كمتر دارد.مشخصات گشتاور طرح E شبيه موتورهاي با همان پارامترهاي نيروي تحت استاندارد IEC ميباشد.
امتيازدهيهاي سرعت – گشتاور طرحهاي IEC عملا آينه استانداردهاي NEMA است.طرح N از IEC شبيه طرح B از NEMA است , عمومي ترين موتورها براي كاربريهاي صنعتي.طرح موتورهاي H از IEC با طرح موتورهاي C از NEMA بسيار شبيه است.IEC طرح خاصي كه با طرح D از NEMA برابري كند ندارد.امتيازدهيهاي چرخه كار IEC متفاوت از كار NEMA است.درحاليكه NEMA معمولا سه نوع كار دائمي غيردائمي(دوره اي) و خاص را معرفي ميكند(كه معمولابا دقيقه بيان ميشوند) , IEC 9 نوع چرخه كار مختلف را استعمال مينمايد.
استانداردهايي كه در جدول 1 نشان داده شده اند صرفنظر از بيان پارامترهاي عملكرد و چرخه هاي كاري , افزايش دما (كلاس ايزولاسيون) اندازه كل (ابعاد فيزيكي موتور) جنس پوسته ضريب نگهداري و چند چيز ديگر را بيان ميكند.

شرح
نوع چرخه كاري
نوع
شماره
عملكرد در بارثابت ومدت زمان كافي براي رسيدن به تعادل گرمايي
كارمداوم
S1
1
كاركرد دربارثابت درزمان معين كمترازميزان لازم براي رسيدن به تعادل گرمايي, كه پس ازآن استراحت به دستگاه داده ميشودبراي رسيدن دماي دستگاه به دماي خنك كننده.
كار موقت
S2
2
توالي چرخه هاي كاري برابر, كه هركدام شامل دوره كاربري دربارثابت ويك وقفه (بدون اتصال به برق)ميباشد.براي اين نوع كاربري جريان استارت تاثيرعمده اي برافزايش دماندارد.
كاردوره اي موقت
S3
3
توالي چرخه هاي كاري برابر, كه شامل دوره هاي عمده استارتينگ ميشود.دوره اي زيربارثابت و با وقفه دوره اي.
كاردوره اي موقت با استارت
S4
4
توالي چرخه هاي برابر,كه شامل دوره اي از استارت ودوره اي ازكاربري دربارثابت شده كه بدنبال آن ترمزي سريع ودوره استراحت ميباشد.
كاردوره اي موقت
با ترمزالكتريكي
S5
5
توالي چرخه هاي كاري برابر, كه شامل دوره اي ازكاربري دربارثابت ودوره كاربري اي درحالت بدون بارميباشد.دراين نوع دوره استراحت وجود ندارد.
عملكردمداوم كاردوره اي
S6
6
توالي چرخه هاي كاري برابر, كه شامل دوره اي ازاستارت,دوره اي ازكاردربار ثابت وبدنبال آن باترمزالكتريكي همراه است.اين نوع دوره استراحتي ندارد.
عملكردمداوم كاردوره اي
با ترمزگيري الكتريكي
S7
7
توالي چرخه هاي كاري برابر, كه دربارثابت كه سرعت چرخش آن از قبل معين شده است كارمي كند وبدنبال آن دوره هاي كاربري دربارثابت ديگري باسرعتهاي چرخش متفاوت است(كاربريe.g).دوره استراحت نداشته وبراي رسيدن به تعادل گرمايي دوره كاري بسياركوتاه است.
عملكردمداوم كاردوره اي
با باروابسته و سرعت متغير
S8
8
عموما كاري با باروسرعتي كه بصورت غيرخطي درمحدوده مجاز تغييرمي كنند.اين كابري شامل اضافه بارهاي متناوب است كه گاهي از ظرفيت تكميل فراتر ميروند.
كاربا بارغير دوره اي
و سرعتهاي متنوع
S9
9
 


برچسب معمول نام يك موتور القايي AC

يك برچسب معمول نام يك موتور القاي AC در شكل 19 نشان داده شده است.

 
شرح
اصطلاح
ولتاژ اسمي پايانه
Volts
جريان تغذيه ظرفيت تكميل اسمي
Amps
خروجي اسمي موتور
H.P.
سرعت اسمي در حالت ظرفيت تكميل موتور
R.P.M
فركانس تغذيه مجاز
Hretz
ابعاد فيزيكي خارجي موتور طيق استاندارهاي NEMA
Frame
حالت بار موتور, كوتاه مدت, دوره اي, مداوم ...
Duty
تاريخ ساخت.
Date
كلاس ايزولاسيوني كه براي ساختمان موتوربكاررفته است.اين مورد بيشينه حد دماي پيچه موتور را مشخص مي كند.
Class Insulation
اين موردمشخص ميكند كه موتور به كدام كلاس طراحي NEMA متعلق است.
NEMA Design
فاكتوري است كه مشخص ميكندموتور ميتواند چقدر بيشتر از ظرفيت تكميل اضافه بار داشته باشد.
Service Factor
بازده كاربري موتور در ظرفيت تكميل.
NEMA Nom
Efficiency
تعداد فازهاي استاتور موتور را مشخص مي كند.
PH
تعداد قطبهاي موتور را مشخص مي كند.
Pole
استاندارد ايمني موتور را نشان ميدهد.
مشخص ميكندكه پيچه هاي موتور بصورت Y متصل شده اند يا دلتا.
Y
 


نياز به محرك الكتريكي

صرفنظراز خصوصيات غيرخطي موتورالقايي موضوعات زيادي ضميمه محركه موتور است.اجازه دهيد آنهارا يك به يك بررسي كنيم.
درقديم تلاش ميشد تا سطح طراحي موتورهاي اوليه از كاري كه قرار است انجام دهند بالاتر باشد.نتيجه اين امر سيستم كاري اي با عدم بازده زياد بود چراكه قسمت عمده اي از توان ورودي كار مفيدي انجام نميداد. اغلب اوقات گشتاور توليدي موتور بيشتر از گشتاور مورد نياز باربود.
براي موتور القايي محدوده حالت پايدار بسبب فركانس تغذيه و تعداد قطبهاي ثابت بين 80 تا 100درصد سرعت ارزيابي شده است.هنگاميكه يك موتور القايي آغاز بكار ميكند بعلت نبود نيروي برق واراني جريان داخلي فراواني خواهد كشيد.نتيجه اين امر اتلاف بيشتر در خطوط انتقال و همچنين روتورخواهد بود كه نهايتا به داغ شدن و احتمالاخرابي و ازبين رفتن عايقها خواهد انجاميد.جريان برقواراني زياد ممكن است موجب تقليل ولتاژ در خطوط تغذيه شود كه ممكن است بر عملكرد وسايل كاربردي ديگري كه به همان منبع تغذيه متصل اند تاثير گذارد.
وقتي كه موتور در باري كمينه كارميكند(اصطلاحا محور آزاد)جريان كشيده شده اصولا جريان مغناطيسي سازيست و تقريبا به طور كامل صرف القا ميشود.درنتيجه ضريب توان بسيار پايين و معمولا0.1 است.هنگامي كه بار افزايش يافت جريان كاري شروع به زياد شدن مي كند.جريان مغناطيسي سازي در تمام محدوده عملياتي از وضعيت بدون بار تا ظرفيت تكميل تقريبا ثابت ميماند.از اين رو با افزايش بار ضريب توان بهبود ميابد.
هنگامي كه موتور با ضريب تواني كمتر از واحد كار ميكند جريان كشيده شده توسط موتور بطور طبيعي سينوسي نيست.اين حالت كيفيت توان در خط تغذيه كاهش داده و ممكن است ديگر وسايل كاربردي كه بهمان خط تغذيه متصلند را متاثر سازد.
ضريب توان بسيار مهم است بطوريكه شركتهاي توضيع مشترياني را كه تواني با ضريب تواني پايين تر از حد معين شده از طرف آنان مي كشند را مجازات مي نمايند.اين بدين معني است كه مشتري مجبور است حالت ظرفيت تكميل را در تمام مدت كاربري حفظ كند و يا آنكه جريمه حالت بار سبك را بپردازد.
درمدت كاربري اغلب لازم است كه موتور سريعا متوقف شده و همچنين برعكس كاركند.در كاربريهايي مانند جرثقيلها يا بالابرها ممكن است لازم شود گشتاور چرخش موتور كنترل شود تا از شتابگيري نامطلوب بار جلوگيري شود (درمورد كاهش سرعت بارها تحت تاثير جاذبه).سرعت و دقت توقف يا معكوس شدن عمليات حفاظت سامانه و كيفيت محصول را بهبود مي بخشد.براي كاربريهاي نامبرده در بالا ترمزگيري لازم است.درگذشته ترمزهاي مكانيكي مورد استفاده بودند.نيروي اصطكاك ميان قسمتهاي گردنده و كفشكها ترمزگيري لازم را فراهم مياوردند.با اينحال اين نوع ترمزگيري بسيار كمبازده است.گرماي توليد شده هنگام ترمزگيري اتلاف انرژي را نشان ميدهد.همچنين ترمزهاي مكانيكي نگهداري فعال لازم دارند.
در بسياري از كاربريها توان ورودي تابع سرعت است مانند فنها دمنده ها پمپها و ...در اين نوع بارها گشتاور به مربع سرعت وابسته و نيرو به مكعب سرعت بستگي دارد.سرعت متغير كه وابسته به نياز بار است صرفه جويي در مصرف انرژي زيادي را ميسر ميسازد.كاهشي 20درصدي در سرعت كاربري موتور تقريبا 50درصد كاهش در توان ورودي موتور را بهمراه خواهد داشت.چنين امري در سامانه هايي كه درآنها موتور مستقيما به خط تغذيه متصل است امكان پذير نيست.در بسياري از كاربريهاي كنترل جريان گلوگاهي مكانيكي اي براي كنترل جريان استفاده ميشود.با اينكه وسيله موثري است انرژي را بخاطر اتلافهاي زياد تلف مي كند و عمر موتور را بعلت گرماي توليدشده كم مينمايد.
هنگامي كه تغذيه كننده تواني را با ضريب (PF) كمتر از واحد تحويل ميدهد وتور جرياني با تاثر از هارمونيكها مي كشد.نتيجه اين امر اتلافهاي بيشتر روتور است كه بر عمر موتور تاثير ميگذارد.گشتاور توليدي موتور به علت وجود هارمونيكها ضرباني خواهد شد.در سرعت بالا بسامد ضربان گشتاور به اندازه كافي بزرگ است كه بتواند بوسيله مقاومت موتور تصفيه شود.ولي در سرعت پايين ضرباني بودن گشتاور ضرباني شدن سرعت را بوجود خواهدآورد كه حركت با حالت متشنج را نتيجه خواهد داد كه برعمر ياتاقانها اثر ميگذارد.
خطوط انتقال ممكن است بخاطر عملكرد ساير دستگاههاي متصل به آن حامل بارهاي با تموج (افزايش ناگهاني) يا كاهش ناگهاني باشند.اگر موتور در مقابل ازاين قبيل حالات محافظت نشده باشد در معرض فشاري بيش از مقدار طراحي شده براي آن قرار ميگيرد كه ممكن است سرانجام دچار خرابي نابهنگام شود.
همه مشكلات ذكرشده در بالا كه بوسيله هردوي مصرف كننده ها و توليدكننده ها بوجود ميايند به نياز موتور به كنترلي هوشمند تاكيد دارند.
با پيشرفت فناوري دستگاه حالت جامد (BJT, MOSFET, IGBT, SCR, …) و فناوري ساخت IC كه به ميكروكنترلرهاي بسيارسريع با قابليت اداره كردن الگوريتم مركب بلادرنگ براي بخشيدن پويايي عملكرد دقيق به موتورهاي القايي AC ترقي بخشيد محرك الكتريكي با فركانس متغير عموميت يافت.
+ نوشته شده توسط فرهاد مقصودی در دوشنبه هشتم فروردین 1390 و ساعت 13:27 |

مقدمه

یک موتور الکتریکی ، الکتریسیته را به حرکت مکانیکی تبدیل می‌کند. عمل عکس آن که تبدیل حرکت مکانیکی به الکتریسیته است، توسط ژنراتور انجام می‌شود. این دو وسیله بجز در عملکرد ، مشابه یکدیگر هستند. اکثر موتورهای الکتریکی توسط الکترومغناطیس کار می‌کنند، اما موتورهایی که بر اساس پدیده‌های دیگری نظیر نیروی الکتروستاتیک و اثر پیزوالکتریک کار می‌کنند، هم وجود دارند.

ایده کلی این است که وقتی که یک ماده حامل جریان الکتریسیته تحت اثر یک میدان مغناطیسی قرار می‌گیرد، نیرویی بر روی آن ماده از سوی میدان اعمال می‌شود. در یک موتور استوانه‌ای ، روتور به علت گشتاوری که ناشی از نیرویی است که به فاصله‌ای معین از محور روتور به روتور اعمال می‌شود، می‌گردد.


اغلب موتورهای الکتریکی دوارند، اما موتور خطی هم وجود دارند. در یک موتور دوار بخش متحرک (که معمولاً درون موتور است) روتور و بخش ثابت استاتور خوانده می‌شود. موتور شامل آهنرباهای الکتریکی است که روی یک قاب سیم پیچی شده است. گر چه این قاب اغلب آرمیچر خوانده می‌شود، اما این واژه عموماً به غلط بکار برده می‌شود. در واقع آرمیچر آن بخش از موتور است که به آن ولتاژ ورودی اعمال می‌شود یا آن بخش از ژنراتور است که در آن ولتاژ خروجی ایجاد می‌شود. با توجه به طراحی ماشین ، هر کدام از بخشهای روتور یا استاتور می‌توانند به عنوان آرمیچر باشند. برای ساختن موتورهایی بسیار ساده کیتهایی را در مدارس استفاده می‌کنند.

 

انواع موتورهای الکتریکی

 

موتورهای DC

یکی از اولین موتورهای دوار ، اگر نگوییم اولین ، توسط مایکل فارادی در سال 1821م ساخته شده بود و شامل یک سیم آویخته شده آزاد که در یک ظرف جیوه غوطه‌ور بود، می‌شد. یک آهنربای دائم در وسط ظرف قرار داده شده بود. وقتی که جریانی از سیم عبور می‌کرد، سیم حول آهنربا به گردش در می‌آمد و نشان می‌داد که جریان منجر به افزایش یک میدان مغناطیسی دایره‌ای اطراف سیم می‌شود. این موتور اغلب در کلاسهای فیزیک مدارس نشان داده می‌شود، اما گاهاً بجای ماده سمی جیوه ، از آب نمک استفاده می‌شود.

موتور کلاسیک DC دارای آرمیچری از آهنربای الکتریکی است. یک سوییچ گردشی به نام کموتاتور جهت جریان الکتریکی را در هر سیکل دو بار برعکس می کند تا در آرمیچر جریان یابد و آهنرباهای الکتریکی، آهنربای دائمی را در بیرون موتور جذب و دفع کنند. سرعت موتور DC به مجموعه ای از ولتاژ و جریان عبوری از سیم پیچهای موتور و بار موتور یا گشتاور ترمزی ، بستگی دارد.

سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جریان است. معمولاً سرعت توسط ولتاژ متغیر یا عبور جریان و با استفاده از تپها (نوعی کلید تغییر دهنده وضعیت سیم پیچ) در سیم پیچی موتور یا با داشتن یک منبع ولتاژ متغیر ، کنترل می‌شود. بدلیل اینکه این نوع از موتور می‌تواند در سرعتهای پایین گشتاوری زیاد ایجاد کند، معمولاً از آن در کاربردهای ترکشن (کششی) نظیر لکوموتیوها استفاده می‌کنند.
اما به هرحال در طراحی کلاسیک محدودیتهای متعددی وجود دارد که بسیاری از این محدودیتها ناشی از نیاز به جاروبکهایی برای اتصال به کموتاتور است. سایش جاروبکها و کموتاتور ، ایجاد اصطکاک می‌کند و هر چه که سرعت موتور بالاتر باشد، جاروبکها می‌بایست محکمتر فشار داده شوند تا اتصال خوبی را برقرار کنند. نه تنها این اصطکاک منجر به سر و صدای موتور می‌شود بلکه این امر یک محدودیت بالاتری را روی سرعت ایجاد می‌کند و به این معنی است که جاروبکها نهایتاً از بین رفته نیاز به تعویض پیدا می‌کنند. اتصال ناقص الکتریکی نیز تولید نویز الکتریکی در مدار متصل می‌کند. این مشکلات با جابجا کردن درون موتور با بیرون آن از بین می‌روند، با قرار دادن آهنرباهای دائم در داخل و سیم پیچها در بیرون به یک طراحی بدون جاروبک می‌رسیم.

 موتورهای میدان سیم پیچی شده

 آهنرباهای دائم در (استاتور) بیرونی یک موتور DC را می‌توان با آهنرباهای الکتریکی تعویض کرد. با تغییر جریان میدان (سیم پیچی روی آهنربای الکتریکی) می‌توانیم نسبت سرعت/گشتاور موتور را تغییر دهیم. اگر سیم پیچی میدان به صورت سری با سیم پیچی آرمیچر قرار داده شود، یک موتور گشتاور بالای کم سرعت و اگر به صورت موازی قرار داده شود، یک موتور سرعت بالا با گشتاور کم خواهیم داشت. می‌توانیم برای بدست آوردن حتی سرعت بیشتر اما با گشتاور به همان میزان کمتر ، جریان میدان را کمتر هم کنیم. این تکنیک برای ترکشن الکتریکی و بسیاری از کاربردهای مشابه آن ایده‌آل است و کاربرد این تکنیک می‌تواند منجر به حذف تجهیزات یک جعبه دنده متغیر مکانیکی شود.

 موتورهای یونیورسال

 یکی از انواع موتورهای DC میدان سیم پیچی شده موتور ینیورسال است. اسم این موتورها از این واقعیت گرفته شده است که این موتورها را می‌توان هم با جریان DC و هم AC بکار برد، اگر چه که اغلب عملاً این موتورها با تغذیه AC کار می‌کنند. اصول کار این موتورها بر این اساس است که وقتی یک موتور DC میدان سیم پیچی شده به جریان متناوب وصل می‌شود، جریان هم در سیم پیچی میدان و هم در سیم پیچی آرمیچر (و در میدانهای مغناطیسی منتجه) همزمان تغییر می‌کند و بنابراین نیروی مکانیکی ایجاد شده همواره بدون تغییر خواهد بود. در عمل موتور بایستی به صورت خاصی طراحی شود تا با جریان AC سازگاری داشته باشد (امپدانس/راکتانس بایستی مدنظر قرار گیرند) و موتور نهایی عموماً دارای کارایی کمتری نسبت به یک موتور معادل DC خالص خواهد بود.

مزیت این موتورها این است که می‌توان تغذیه AC را روی موتورهایی که دارای مشخصه‌های نوعی موتورهای DC هستند بکار برد، خصوصاً اینکه این موتورها دارای گشتاور راه اندازی بسیار بالا و طراحی بسیار جمع و جور در سرعتهای بالا هستند. جنبه منفی این موتورها تعمیر و نگهداری و مشکل قابلیت اطمینان آنهاست که به علت وجود کموتاتور ایجاد می‌شود و در نتیجه این موتورها به ندرت در صنایع مشاهده می‌شوند، اما عمومی‌ترین موتورهای AC در دستگاههایی نظیر مخلوط کن و ابزارهای برقی که گاهاً استفاده می‌شوند، هستند.

 موتورهای AC

 

 موتورهای AC تک فاز:

معمولترین موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هایی بکار می رود که گشتاور پایین نیاز دارند، نظیر پنکه‌های برقی ، اجاقهای ماکروویو و دیگر لوازم خانگی کوچک. نوع دیگر موتور AC تک فاز موتور القایی است، که اغلب در لوازم بزرگ نظیر ماشین لباسشویی و خشک کن لباس بکار می‌رود. عموماً این موتورها می‌توانند گشتاور راه اندازی بزرگتری را با استفاده از یک سیم پیچ راه انداز به همراه یک خازن راه انداز و یک کلید گریز از مرکز ، ایجاد کنند.

هنگام راه اندازی ، خازن و سیم پیچ راه اندازی از طریق یک دسته از کنتاکتهای تحت فشار فنر روی کلید گریز از مرکز دوار ، به منبع برق متصل می‌شوند. خازن به افزایش گشتاور راه اندازی موتور کمک می‌کند. هنگامی که موتور به سرعت نامی رسید، کلید گریز از مرکز فعال شده ، دسته کنتاکتها فعال می‌شود، خازن و سیم پیچ راه انداز سری شده را از منبع برق جدا می‌سازد، در این هنگام موتور تنها با سیم پیچ اصلی عمل می‌کند.

موتورهای AC سه فاز:

 برای کاربردهای نیازمند به توان بالاتر، از موتورهای القایی سه فاز AC (یا چند فاز) استفاده می‌شود. این موتورها از اختلاف فاز موجود بین فازهای تغذیه چند فاز الکتریکی برای ایجاد یک میدان الکترومغناطیسی دوار درونشان ، استفاده می‌کنند. اغلب ، روتور شامل تعدادی هادیهای مسی است که در فولاد قرار داده شده‌اند. از طریق القای الکترومغناطیسی میدان مغناطیسی دوار در این هادیها القای جریان می‌کند، که در نتیجه منجر به ایجاد یک میدان مغناطیسی متعادل کننده شده و موجب می‌شود که موتور در جهت گردش میدان به حرکت در آید.

این نوع از موتور با نام موتور القایی معروف است. برای اینکه این موتور به حرکت درآید بایستی همواره موتور با سرعتی کمتر از فرکانس منبع تغذیه اعمالی به موتور ، بچرخد، چرا که در غیر این صورت میدان متعادل کننده‌های در روتور ایجاد نخواهد شد. استفاده از این نوع موتور در کاربردهای ترکشن نظیر لوکوموتیوها ، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزایش است. به سیم پیچهای روتور جریان میدان جدایی اعمال می‌شود تا یک میدان مغناطیسی پیوسته ایجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با میدان مغناطیسی دوار ناشی از برق AC سه فاز ، به گردش در می‌آید. موتورهای سنکرون را می‌توانیم به عنوان مولد جریان هم بکار برد.

سرعت موتور AC در ابتدا به فرکانس تغذیه بستگی دارد و مقدار لغزش ، یا اختلاف در سرعت چرخش بین روتور و میدان استاتور ، گشتاور تولیدی موتور را تعیین می‌کند. تغییر سرعت در این نوع از موتورها را می‌توان با داشتن دسته سیم پیچها یا قطبهایی در موتور که با روشن و خاموش کردنشان سرعت میدان دوار مغناطیسی تغییر می‌کند، ممکن ساخت. به هر حال با پیشرفت الکترونیک قدرت می توانیم با تغییر دادن فرکانس منبع تغذیه ، کنترل یکنواخت تری بر روی سرعت موتورها داشته باشیم.

موتورهای پله‌ای

نوع دیگری از موتورهای الکتریکی موتور پله‌ای است، که در آن یک روتور درونی ، شامل آهنرباهای دائمی توسط یک دسته از آهنرباهای خارجی که به صورت الکترونیکی روشن و خاموش می‌شوند، کنترل می‌شود. یک موتور پله‌ای ترکیبی از یک موتور الکتریکی DC و یک سلونوئید است. موتورهای پله‌ای ساده توسط بخشی از یک سیستم دنده‌ای در حالتهای موقعیتی معینی قرار می‌گیرند، اما موتورهای پله‌ای نسبتا کنترل شده ، می‌توانند بسیار آرام بچرخند. موتورهای پله‌ای کنترل شده با کامپیوتر یکی از فرمهای سیستمهای تنظیم موقعیت است، بویژه وقتی که بخشی از یک سیستم دیجیتال دارای کنترل فرمان یار باشند.

موتورهای خطی

یک موتور خطی اساساً یک موتور الکتریکی است که از حالت دوار در آمده تا بجای اینکه یک گشتاور (چرخش) گردشی تولید کند، یک نیروی خطی توسط ایجاد یک میدان الکترومغناطیسی سیار در طولش ، بوجود آورد. موتورهای خطی اغلب موتورهای القایی یا پله‌ای هستند. می‌توانید یک موتور خطی را در یک قطار سریع السیر ماگلیو مشاهده کنید که در آن قطار روی زمین پرواز می‌کند .

تعریف گالوانومتر :

بسته به مقدار جریان اثرهای آن به میزان متفاوت بروز می کنند. بنابر این برای اندازه گیری جریان می توان از هر یک از اثرهای شیمیای ، گرمایی یا مغناطیسی آن استفاده کرد وسایلی که برای اندازه گیری جریان به کار می روند، گالوانومتر نامیده می شود.

گالوانومتر ساده :

ساده ترین نوع گالوانومتر با استفاده از اثر گرمایی جریان ساخته شده است. این گالوانومتر دارای دو سیم نازک است که یکی از سیم ها در دو انتهایش ثابتند. و جریان گذرنده از آن اندازه گیری می شود. سیم نازک و محکم دوم دور محور عقربه پیچیده شده است. وسط سیم کشیده اول را به فنر کشیده ای وصل می کنند که سر دیگرش به بدنه گالوانومتر متصل است.

بر اثر جریان ، سیم اول گرم و دراز می شود. رشته سیم که توسط فنر کشیده می شود عقربه گالوانومتر را به اندازه زاویه معینی می چرخاند که بستگی به دراز شدن سیم یعنی شدت جریان الکتریکی دارد. صفحه گالوانومتر برای جریان بر حسب آمپر ، میلی آمپر مدرج می شود. در این صورت گالوانومتر آمپرسنج یا میلی آمپر سنج نامیده می شود.

آمپرسنج برای اندازه گیری جریان:                                                             

برای اندازه گیری جریان گالوانومتر یا آمپرسنج باید طوری اتصال داده شود که جریان کل مدار بتواند از آن عبور کند. برای این منظور باید در نقطه ای مدار را قطع و دو انتهایش را به قطب آمپر سنج وصل کرد. به عبارت دیگر آمپرسنج را باید به طوری متوالی در مدار قرار داد. چون جریان حالت ثابت را اندازه می گیریم. اینکه وسیله را به کدام قسمت از مدار وصل کنیم اهمیتی ندارد در صورتیکه در جریانهای متغییر چنین نیست.

ولت سنج برای اندازه گیری ولتاژ :

با استفاده از گالوانومتر نه فقط جریان بلکه ولتاژ را نیز می توان اندازه گرفت. زیرا بنابر قانون اهم این کمیت ها متناسبند. اگر دو کمیت با یکدیگر متناسب باشند با وسیله ای که به طور مناسب مندرج شده باشد می توان هر دو کمیت را اندازه گرفت. مثلاً تاکسی متر که فاصله طی شده را اندازه می گیرد، می توان برحسب کیلومتر مدرج کرد. ولی چون کرایه با فاصله متناسب است، درجات شمارنده را بطور مستقیم به پول پرداختی مدرج می کنند. به طوری که مستقیماً کرایه را نشان می دهد.

به همین ترتیب صفحه گالوانومتر را می توان طوری مدرج کرد که بتواند بطور مستقیم هم جریان برحسب آمپر عبور کرده از وسیله و هم ولتاژ دو سر آن را برحسب ولت اندازه بگیرد. بنابر این گالوانومتری که برای جریان مدرج می شود آمپرسنج ، در حالی که وسیله ای که برای ولتاژ مدرج می شود و لت سنج نام دارد .

دستگاه ها ی مرکب :

در حالت کلی اگر جریان I از گالوانومتر عبور کند، باید بین قطب های ورودی و خروجی آن ولتاژ معین U وجود داشته باشد. فرض کنید که مقاومت داخلی گالوانومتر یعنی مقاومت قسمت هایی از آن که جریان از آنها عبور می کند، R باشد (برای گالوانومتر ها با مغناطیس دائمی R مجموع تاب و سیم های رابط است، در حالی که برای گالوانومترهای با سیم افروزشی R مجموع مقاومت سیم گرم شده و رابط هاست).

بنابر قانون اهم U=IR می باشد. پس برای یک گالوانومتر معین ، هر مقدار از جریان با مقدار معینی از ولتاژ در دو سر قطب های آن متناظر است. بنابر این جای قرار گرفتن عقربه می تواند هم جریان و هم ولتاژ را نشان دهد. یعنی دستگاه را می توان هم به عنوان آمپرسنج و هم به عنوان ولت سنج مدرج کرد.

چگونگی قراردادن ولت سنج در مدار :

با استفاده از یک ولت سنج مدرج می توان اختلاف پتاسیل الکتریکی بین هر دو نقطه از مدار را اندازه گرفت. مثلا اگر اختلاف پتاسیل دو سر یک لامپ رشته ای را که از چشمه جریانی تغذیه می کند بخواهید اندازه گیری کنید. باید دو سر ولت سنج را به دو سر لامپ ببندید. به عبارتی ولت سنج جهت سنجش اختلاف پتاسیل (ولتاژ) دو نقطه از مدار یا یک عنصری از مدار بصورت موازی در مداز گذاشته می شود. به عبارتی ولتاژ گذرنده از ولت سنج همان ولتاژ تمامی قسمت هایی از مدار است که آرایش موازی با ولت سنج دارد. در صورتیکه در مورد آمپر سنج قرارگیری در مدار بصورت متوالی است. و با اندازه گیری جریان گذرنده از یک تکه از مدار جریان کل مدار را می دهد، که باید با جریان المان مداری اندازه گیری شده ، برابر باشد.

مقاومت درونی ولت سنج:

ولت سنج را به جزئی از مدار که ولتاژ دو سر آن باید اندازه گیری شود به طور موازی می بندند. و از این رو جریان معینی ازمدار اصلی از آن می گذرد. پس ازاینکه ولت سنج وصل شد، جریان و ولتاژ درمدار اصلی قدری تغییر می کند. به طوری که حالا مداری متفاوت از رساناها داریم، که شامل رساناهای قبلی و ولت سنج است. مثلا با اتصال ولت سنج با مقاومت Rv به طوری موازی با لامپی که مقاومتش Rb است مقاومت کل مدار بصورت

(R= Rb/(1+Rb/Rv خواهد بود. هر چه مقاومت ولت سنج در مقایسه با مقاومت لامپ بزرگتر باشد، اختلاف بین مقاومت ولت سنج باید تا حد امکان بزرگ اختیار شود. برای این منظور یک مقاومت اضافی را که ممکن است مقاومتش به چند هزار اهم برسد، گاهی به طور متوالی به قسمت اندازه گیر ولت سنج می بندند.

مقاومت درونی آمپرسنج :  

برخلاف ولت سنج، آمپرسنج همیشه در مدار به طور متوالی بسته می شود اگر مقاومت آمپرسنج Ra و مقاومت مدار Rc باشد، مقاومت کل مدار با آمپرسنج برابر می شود با :

(R=Rc(1+Ra/Rc

بنابر این در صورتیکه مقاومت وسیله در مقایسه با مقاومت مدار کوچک باشد بر طبق رابطه اخیر وسیله مقاومت کل مدار را زیاد تغییر نمی دهند. بنابر این مقاومت آمپرسنج ها را خیلی کوچک انتخاب می کنند (چنددهم یاچندصدم اهم)

 

+ نوشته شده توسط فرهاد مقصودی در یکشنبه هفتم فروردین 1390 و ساعت 0:19 |

مدارهای الکتریکی از به‌هم پیوستن المان‌های الکتریکی یا غیر فعال (مقاومت، خازن، سلف، لامپ، و ...) یا المانهای الکترونیکی یا فعال (دیود، ترانزیستور، IC، و ...) یا ترکیبی از آن دو بوجود می‌آید به طوری که حداقل یک مسیر بسته را ایجاد کنند و جریان الکتریکی بتواند در این مسیر بسته جاری شود.

اگر عناصر تشکیل دهندهٔ مدار الکتریکی باشند، مدار الکتریکی نامیده می‌شود، و اگر عناصر الکتریکی و الکترونیکی باشند، مدار الکترونیکی است .

هر مدارالکتریکی از اجزای اصلی زیر تشکیل شده است:

  1. یک منبع تغذیه‌الکتریکی مانند باتری یا ژنراتور
  2. سیم‌های رابط: سیم‌ها یا نوارهای ارتباط دهنده مدار، از یک ماده رسانای الکتریسیته خوب مانند مس تشکیل می‌شوند.
  3. مصرف کننده یا بار[۱]: وقتی می‌گوییم یک مدار الکتریکی تشکیل شده است، که اتصال دهنده‌ها و سایر قطعات، یک حلقه بسته را بوجود آورده باشند. تنها در این صورت است که جریان برق برقرار می‌شود.
  4. المانهای مداری: همچون خازن، مقاومت، سلف، ترانسفورماتور، دیود
+ نوشته شده توسط فرهاد مقصودی در شنبه ششم فروردین 1390 و ساعت 23:15 |

الله نور السماوات و الارض

 

+ نوشته شده توسط فرهاد مقصودی در شنبه ششم فروردین 1390 و ساعت 17:12 |


Powered By
BLOGFA.COM